吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1650-1657.doi: 10.13229/j.cnki.jdxbgxb.20230152

• 交通运输工程·土木工程 • 上一篇    

基于裂缝宽度变化的连续刚构桥安全性预警技术

王华1(),王龙林1,张子墨2,何昕3()   

  1. 1.广西交科集团有限公司 桥梁工程研究院,南宁 530007
    2.广西大学 土木建筑工程学院,南宁 530004
    3.吉林大学 交通学院,长春 130022
  • 收稿日期:2023-02-01 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 何昕 E-mail:939156574@qq.com;hexin@jlu.edu.cn
  • 作者简介:王华(1989-),男,高级工程师,博士.研究方向:桥梁智能化监测.E-mail:939156574@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFB2600604);广西重点研发计划项目(2021AB22121)

Safety early warning technology of continuous rigid frame bridges based on crack width variation

Hua WANG1(),Long-lin WANG1,Zi-mo ZHANG2,Xin HE3()   

  1. 1.Bridge Engineering Research Institute,Guangxi Transportation Science and Technology Group Co. ,Ltd. ,Nanning 530007,China
    2.School of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China
    3.College of Transportation,Jilin University,Changchun 130022,China
  • Received:2023-02-01 Online:2023-06-01 Published:2023-07-23
  • Contact: Xin HE E-mail:939156574@qq.com;hexin@jlu.edu.cn

摘要:

为了剔除温度变化对连续刚构桥裂缝宽度的影响,提高通过裂缝宽度变化评估桥梁安全性的效率和准确性,以广西省境内一座刚构桥为研究对象,分别建立了全桥整体模型和带裂缝梁段精细化模型,根据跨层级模型计算结果研究了温度与裂缝宽度变化之间的关系。结果表明:均匀温度和梯度温度作用均对裂缝宽度变化存在影响,利用修正后考虑混凝土材料特性变化的关系式可以快速确定温度变化导致的裂缝宽度变化值,为桥梁安全性预警提供重要依据。最后,将本文方法应用于某桥工程实例,通过实测数据验证了该方法的准确性。

关键词: 桥梁工程, 刚构桥, 裂缝宽度, 温度变化

Abstract:

In order to eliminate the influence of temperature variation on crack width of continuous rigid frame bridges and improve the efficiency and accuracy of evaluating bridge safety through crack width variation, a rigid frame bridge in Guangxi Province was taken as the research object. The whole bridge model and the refined model of beam segment with cracks were established respectively. The relationship between temperature and crack width variation was studied according to the calculation results of cross-level model. The results show that both the uniform temperature and the gradient temperature action have an effect on the crack width variation. The modified formula considering the change of concrete material characteristics can be used to quickly determine the crack width variation caused by temperature change, which can provide an important basis for bridge safety early warning. Finally, the proposed method is applied to Luotianle Bridge project, and the accuracy of this method is verified by measured data.

Key words: bridge engineering, rigid frame bridge, crack width, temperature variation

中图分类号: 

  • U446

图1

刚构桥及合拢段底板处裂缝图"

图2

刚构桥上传感器布置"

图3

2022年6月内裂缝宽度和温度变化趋势"

图4

刚构桥整体模型"

表1

均匀升温下内力值"

(ΔT2T1)/℃轴力/kN剪力/kN弯矩/(kN·m)
0000
1-11.85-1.60-214.26
2-23.71-3.20-428.53
3.5-41.48-5.60-749.93
5-59.26-8.00-1071.32
6-71.11-9.60-1285.59
7-82.97-11.21-1499.85
8.5-100.75-13.61-1821.25
10-118.52-16.01-2142.65
11-130.38-17.61-2356.91
12-142.23-19.21-2571.18
13.5-160.01-21.61-2892.58
15-177.79-24.01-3213.97
16-189.64-25.61-3428.24
17-201.49-27.21-3642.50
18.5-219.27-29.61-3963.90
20-237.05-32.02-4285.30
22-260.75-35.22-4713.83
24-284.46-38.42-5142.36
25-296.31-40.02-5356.62
27-320.02-43.22-5785.15

表2

梯度升温下内力值"

(ΔT1T2)/℃轴力/kN剪力/kN弯矩/(kN·m)
0000
1-20.52-18.707 045.34
2-41.05-37.4114 090.68
3.5-71.83-65.4624 658.68
5-102.62-93.5235 226.69
6-123.14-112.2242 272.03
7-143.67-130.9249 317.37
8.5-174.45-158.9859 885.38
10-205.24-187.0470 453.38
11-225.76-205.7477 498.72
12-246.29-224.4484 544.06
13.5-277.07-252.5095 112.07
15-307.86-280.55105 680.07
16-328.39-299.26112 725.41
17-348.91-317.96119 770.75
18.5-379.69-346.02130 338.76
20-410.48-374.07140 906.77
22-451.53-411.48154 997.45
24-492.58-448.88169 088.12
25-513.10-467.59176 133.46
27-554.15-504.99190 224.14

图5

带裂缝梁段精细化模型"

图6

均匀降温1 ℃下裂缝两端位移计算结果"

表3

均匀温度下的裂缝宽度变化值"

(ΔT2T1)/℃Δw/mm(ΔT2T1)/℃Δw/mm
0013.5-0.016 150
1-0.001 19615-0.017 940
2-0.002 391 516-0.019 141
3.5-0.004 18517-0.020 337
5-0.005 98118.5-0.022 131
6-0.007 17520-0.023 925
7-0.008 37422-0.026 312
8.5-0.010 16924-0.028 700
10-0.011 96225-0.029 901
11-0.013 15827-0.032 292
12-0.014 354

图7

表3结果趋势图"

表4

梯度温度下的裂缝宽度变化值"

(ΔT1T2)/℃Δw/mm(ΔT1T2)/℃Δw/mm
0013.50.465 40
10.034 487150.517 10
20.068 970160.551 70
3.50.120 69170.585 30
50.172 4218.50.638 00
60.206 92200.689 50
70.241 47220.757 60
8.50.293 14240.827 60
100.344 86250.862 20
110.379 31270.930 80
120.413 90

图8

表4结果趋势图"

图9

杆系结构微段弯曲变形示意图"

图10

裂缝宽度变化值拟合结果"

1 周军生, 楼庄鸿. 大跨径预应力混凝土连续刚构桥的现状和发展趋势[J]. 中国公路学报,2000,13(1): 31-37.
Zhou Jun-sheng, Lou Zhuang-hong. The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure[J]. China Journal of Highway and Transport, 2000, 13(1): 31-37.
2 Xue J Q, Briseghella B, Lin J H, et al. Design and field tests of a deck-extension bridge with small box girder[J]. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(6): 467-479.
3 Kheir J, Klausen A, Hammer T A, et al. Early age autogenous shrinkage cracking risk of an ultra-high performance concrete (UHPC) wall: Modelling and experimental results[J]. Engineering Fracture Mechanics, 2021, 257: No. 108024.
4 Cusson D, Hoogeveen T. An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage[J]. Cement and Concrete Research, 2007, 37(2): 200-209.
5 袁勇. 混凝土结构早期收缩裂缝控制[M]. 北京:科学出版社, 2004.
6 Liu J, Liu YJ, Zhang C Y, et al. Temperature action and effect of concrete-fifilled steel tubular bridges: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2): 174-191.
7 贾福杰, 姚燕, 雷素素, 等. 基于温度应力开裂架的剪力墙混凝土抗裂性能研究及工程应用[J]. 混凝土,2019, 6: 140-143.
Jia Fu-jie, Yao Yan, Lei Su-su, et al. Research on crack resistance of shear wall concrete based on temperature stress cracking frame and its engineering application[J]. Concrete, 2019, 6: 140-143.
8 王雷, 崔文良. 大体积混凝土早期温度开裂成因及其防治措施[J]. 中外建筑,2007, 8: 104-105.
Wang Lei, Cui Wen-liang. The cause and the prevention measure of mass concrete early temperature fracture[J]. Chinese and Overseas Architecture, 2007, 8: 104-105.
9 Baek K, Chung I, Shin H, et al. Multiscale study for the temperature effect on the mechanical properties and fatigue crack growth rate of polyamide 66[J]. Extreme Mechanics Letters, 2021, 43: No.101154.
10 戴亚. 混凝土拱肋立式预制施工期温度及收缩裂缝问题研究[D]. 南京:东南大学土木工程学院, 2015.
Dai Ya. Study on the construction phase of the temperatureand shrinkage crack problem of vertical precast concrete arch[D]. Nanjing: School of Civil Engineering, Southeast University, 2015.
11 陆洲导. 钢筋混凝土梁对火灾反应的研究[D]. 上海:同济大学工程结构研究所, 1989.
Lu Zhou-dao. Study of the response of reinforcedconcrete beams to fire[D]. Shanghai: Engineering Research Institute, Tongji University, 1989.
12 覃丽坤, 宋玉普, 王玉杰, 等. 高温对混凝土力学性能影响的试验研究[J]. 混凝土,2004, 5: 9-11.
Qin Li-kun, Song Yu-pu, Wang Yu-jie, et al. Testing research of mechanics characteristics of concrete affected by high temperature[J]. Concrete, 2004, 5: 9-11.
13 Nian T F, Li P, Zhang G H, et al. Prediction model of complex shear modulus of SBS modified asphalt binder considering water-temperature cycles[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 533-543.
[1] 冯宇,郝键铭,王峰,张久鹏,黄晓明. 非平稳极端风作用下大跨桥梁瞬态风致效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1638-1649.
[2] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[3] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[4] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[5] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
[6] 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380.
[7] 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111.
[8] 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495.
[9] 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816.
[10] 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873.
[11] 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652.
[12] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[13] 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755.
[14] 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762.
[15] 高凯,刘纲. 全局临界强度分枝-约界法的有效强度改进[J]. 吉林大学学报(工学版), 2021, 51(2): 597-603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!