吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1719-1728.doi: 10.13229/j.cnki.jdxbgxb.20230096

• 交通运输工程·土木工程 • 上一篇    

层间粘结失效后桥面沥青铺装层细观力学行为分析

司春棣1,2(),崔亚宁2,许忠印3,凡涛涛2   

  1. 1.石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
    2.石家庄铁道大学 交通运输学院,石家庄 050043
    3.河北雄安京德高速公路有限公司,河北 保定 071700
  • 收稿日期:2023-02-02 出版日期:2023-06-01 发布日期:2023-07-23
  • 作者简介:司春棣(1980-),女,教授,博士.研究方向:道路工程.E-mail:sichundi@stdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600600);国家自然科学基金项目(11972237);河北省交通厅科技计划项目(JD-202007)

Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure

Chun-di SI1,2(),Ya-ning CUI2,Zhong-yin XU3,Tao-tao FAN2   

  1. 1.State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    3.Hebei Xiongan Jingde Expressway Co. ,Ltd. ,Baoding 071700,China
  • Received:2023-02-02 Online:2023-06-01 Published:2023-07-23

摘要:

首先,通过室内单轴压缩试验、劈裂试验和斜剪试验及其数值仿真标定了沥青上面层、下面层及防水粘结层细观参数;然后,通过施加滚荷载和设置层间粘结失效区域,对各结构层材料的应力、位移、速度等力学行为进行监测。结果表明,沥青面层间的粘结失效会显著影响上面层与下面层顶部颗粒的应力和运动状态,且下面层颗粒横向应力响应明显变大;沥青面层与桥面板间的粘结失效导致下面层底部颗粒横向应力增大,层间出现横向移动趋势。通过监测层间粘结失效后不同结构层材料的力学状态变化可以预测桥面铺装层病害的发展,为桥面沥青铺装层预防性养护提供参考。

关键词: 道路工程, 桥面铺装, 离散元法, 细观力学, 层间粘结失效

Abstract:

Firstly, the mesoscopic parameters of asphalt upper layer, lower layer and waterproof bond layer were calibrated by uniaxial compression test, splitting test and oblique shear test. Then, by setting the failure area of interlayer bond, the stress, displacement and velocity of each structural layer was monitored. The results show that the bonding failure between asphalt surface layers significantly affects the stress and motion state of the top particles of the upper and lower layers, and the transverse stress of the bottom particles increases obviously. The bonding failure between the asphalt surface and the bridge panel leads to the increase of transverse stress of the particles at the bottom of the lower layer and the transverse movement trend between the layers. By monitoring the mechanical state changes of different structural layer materials after interlayer bonding failure, the development of bridge deck paving layer disease can be predicted, which can provide reference for preventive maintenance of asphalt bridge deck pavement.

Key words: road engineering, bridge deck pavement, discrete element method, meso-mechanical, interlaminar bonding failure

中图分类号: 

  • U414

图1

平行粘结模型"

图2

接触粘结模型"

图3

桥面铺装层离散元模型"

图4

接触模型分布"

图5

简支梁桥有限元模型分析"

图6

不同结构层材料室内试验"

图7

单轴压缩试验数值仿真"

图8

劈裂试验数值仿真"

图9

斜剪试验数值仿真"

图10

试验结果与模拟结果对比"

表1

桥面铺装各结构层细观参数"

结构层位颗粒密度/(kg·m-3刚度比拉伸强度/MPa剪切强度/MPa弹性模量/MPa
上面层粗集料24502.52.222.652200
砂浆21002.51.361.8572
下面层粗集料24502.01.82.33200
砂浆21002.01.31.852
水泥混凝土桥面板粗集料250013.24.52900
砂浆215014.55.4250

图11

桥面铺装层典型颗粒标识"

图12

测量圆设置"

图13

滚动荷载加载模型"

图14

滚动加载接触"

图15

轮胎接地压强调试曲线"

图16

不同层位粘结失效结构接触模型图"

图17

不同层间粘结状态下横向应力响应"

图18

不同层间粘结状态下竖向应力响应"

图19

不同层间粘结状态下剪应力响应"

图20

不同层间粘结状态下颗粒竖向位移"

图21

不同层间粘结状态下颗粒竖向速度"

1 黄晓明. 水泥混凝土桥面沥青铺装层技术研究现状综述[J]. 交通运输工程学报, 2014, 14(1): 1-10.
Huang Xiao-ming. Review of research status of asphalt paving layer technology for cement concrete bridge deck [J]. Journal of Traffic and Transportation Engineering, 2014,14(1):1-10.
2 黄晓明, 赵润民. 道路交通基础设施韧性研究现状与展望[J/OL]. [2023-02-01].
3 Wu Shu-hua, Chen Hua-xin, Zhang Jiu-peng, et al. Effects of interlayer bonding conditions between semi-rigid base layer and asphalt layer on mechanical responses of asphalt pavement structure[J]. International Journal of Pavement Research and Technology, 2017, 10(3): 274-281.
4 Hu X, Walubita L F. Effects of layer interfacial bonding conditions on the mechanistic responses in asphalt pavements[J]. Journal of Transportation Engineering, 2011, 137(1): 28-36.
5 Liu L, Hao P W. Effect of bonding condition between asphalt layers on behavior of pavement[C]∥The Twelfth Cota international Conference of Transportation Professionals, American Society of Civil Engineers, Beijing, China, 2012: 2955-2964.
6 Chen W D, Hui B, Rahman A. Interlayer shear characteristics of bridge deck pavement through experimental and numerical analysis[J]. Materials, 2022, 15(19): No.7001.
7 包龙生, 樊乾玉, 兰皓, 等. 基于层间接触的空心板梁及桥面铺装在双轴移动荷载下的力学响应分析[J]. 沈阳建筑大学学报: 自然科学版, 2020, 36(3): 491-499.
Bao Long-sheng, Fan Qian-yu, Lan Hao, et al. Mechanical response analysis of hollow slab girder and bridge deck pavement under biaxial moving loads based on interlayer contact[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2020, 36(3): 491-499.
8 张锋, 李梦琪, 王天宇, 等. 水泥混凝土桥面复合防水粘结层的性能[J]. 哈尔滨工业大学学报, 2020, 52(3): 26-32.
Zhang Feng, Li Meng-qi, Wang Tian-yu, et al. Performance of composite waterproof bonding layer of cement concrete bridge deck[J]. Journal of Harbin institute of Technology, 2020, 52(3): 26-32.
9 Chun S, Kim K, Greene J, et al. Evaluation of interlayer bonding condition on structural response characteristics of asphalt pavement using finite element analysis and full-scale field tests[J]. Construction and Building Materials, 2015, 96, 307-318.
10 Mahmound E, Masad E, Nazarian S. Discrete element analysis of the influences of aggregate properties and internal structure on fracture in asphalt mixture[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 10-20.
11 陈俊. 基于离散元法的沥青混合料虚拟疲劳试验方法[J]. 吉林大学学报: 工学版, 2010, 40(2): 435-440.
Chen Jun. Virtual fatigue test method of asphalt mixture based on discrete element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(2): 435-440.
12 陈俊, 黄晓明. 沥青路面结构的荷载响应分析[J]. 建筑材料学报, 2012, 15(1): 116-121.
Chen Jun, Huang Xiao-ming. Load response analysis of asphalt pavement structure[J]. Journal of Building Materials, 2012, 15(1): 116-121.
13 彭勇, 杨汉铎, 陆学元, 等. 基于离散元法空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报: 工学版, 2021, 51(3): 956-964.
Peng Yong, Yang Han-duo, Lu Xue-yuan, et al. Influence of void characteristics on virtual shear fatigue life of asphalt mixture based on discrete element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
14 严战友, 王朝辉, 陈恩利, 等. 离散元法的沥青路面车-路动力学响应分析[J]. 中国公路学报, 2019, 32(9): 51-60, 79.
Yan Zhan-you, Wang Zhao-hui, Chen En-li, et al. Dynamic response analysis of asphalt pavement vehicle-road based on discrete element method[J]. Chinese Journal of Highways, 2019, 32(9): 51-60, 79.
15 Cui Ya-ning, Si Chun-di, Li Song, et al. Comparative study of the mesomechanical response of asphalt bridge deck pavement under multiple loads[J]. Coatings, 2022, 12(11): No.1665.
16 . 公路工程沥青及沥青混合料试验规程 [S].
17 . 公路钢桥面铺装设计与施工技术规范 [S].
18 赵全满, 张洪亮, 周浩. 基于离散元的水泥混凝土细观模拟试验[J]. 公路交通科技, 2016, 33(12): 48-55.
Zhao Quan-man, Zhang Hong-liang, Zhou Hao. Mesoscopic simulation test of cement concrete based on discrete element[J]. Highway Traffic Science and Technology, 2016, 33(12): 48-55.
19 王宁, 马涛, 陈丰, 付永强. 影响智能骨料感知的关键因素及数据分析方法[J/OL]. [2023-02-01].
20 马少坤, 黄骁, 韦榕宽, 等. 考虑滚动阻抗的线性接触模型离散元宏细观参数敏感性研究[J]. 中国安全生产科学技术, 2021, 17(6): 104-110.
Ma Shao-kun, Huang Xiao, Wei Rong-kuan, et al. Macro and mesoscopic parameter sensitivity of discrete element of linear contact model considering rolling impedance[J]. China Safety Production Science and Technology, 2021, 17(6): 104-110.
21 薛强, 盛谦. 沥青路面破坏的多场耦合效应及控制技术[M]. 北京: 科学出版社, 2009: 30-80.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[6] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[7] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[8] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[9] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[10] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[11] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[12] 陈栩,曹超飞,尚静,黄明星,艾长发,任东亚. 动静水环境作用下级配离析对沥青混合料水损害的影响评价[J]. 吉林大学学报(工学版), 2023, 53(1): 210-219.
[13] 彭勇,章秀芳,郭泽宇,陆学元,李彦伟. 离散元法分析集料接触特性对沥青混合料剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 178-187.
[14] 孙雅珍,郑直,黄伟明,王金昌. 基于状态空间法的含裂缝水泥路面结构分析[J]. 吉林大学学报(工学版), 2023, 53(1): 188-196.
[15] 时爽,林岚钦,马涛,顾临皓,张燕宁. 基于分子动力学的生物质透层油稳定性[J]. 吉林大学学报(工学版), 2023, 53(1): 197-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!