吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2147-2155.doi: 10.13229/j.cnki.jdxbgxb20220296

• • 上一篇    

质子交换膜燃料电池气体扩散层的力学改进模型

肖阳(),王洁,刘孟军,杨发庆,张天瑶,兰巍()   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2022-03-23 出版日期:2022-09-01 发布日期:2022-09-13
  • 通讯作者: 兰巍 E-mail:xiaoy2016@jlu.edu.cn;lanwei@jlu.edu.cn
  • 作者简介:肖阳(1984-),男,副教授,博士. 研究方向:车用动力电池机械完整性. E-mail:xiaoy2016@jlu.edu.cn
  • 基金资助:
    汽车仿真与控制国家重点实验室开放基金项目(20210235);吉林省重大研发专项项目(2020051012GX)

Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell

Yang XIAO(),Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN()   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2022-03-23 Online:2022-09-01 Published:2022-09-13
  • Contact: Wei LAN E-mail:xiaoy2016@jlu.edu.cn;lanwei@jlu.edu.cn

摘要:

针对质子交换膜燃料电池膜电极结构力学特性复杂,导致工程中的仿真分析结果难以与真实情况吻合的问题,对膜电极结构中气体扩散层的复杂力学行为进行描述,进而改进燃料电池力学仿真的准确性。首先,提出了气体扩散层微观结构的改进模型,并通过实验的方法确定了模型参数。然后,利用UMAT用户子程序在Abaqus中进行有限元仿真验证。实验与仿真结果表明,本文力学改进模型能够较好地模拟气体扩散层的非线性力学行为,可以提高燃料电池工程仿真的准确度,可应用于燃料电池装配及机械寿命预测的工程分析中。

关键词: 质子交换膜燃料电池, 气体扩散层, 力学模型, 压缩载荷, 有限元分析

Abstract:

Aiming at the problem that the mechanical properties of the membrane electrode structure of the proton exchange membrane fuel cell are complex, which makes the simulation analysis results in engineering difficult to match the real situation, the complex mechanical behavior of the gas diffusion layer in the membrane electrode structure was described, and then the accuracy of fuel cell mechanics simulations was improved. First, an improved model of the microstructure of the gas diffusion layer was proposed, and the model parameters were determined by means of experiments. Then, the finite element simulation verification was carried out in Abaqus using the UMAT user subroutine. The experimental and simulation results show that the improved mechanical model can better simulate the nonlinear mechanical behavior of the gas diffusion layer, improve the accuracy of fuel cell engineering simulation, and can be applied to the engineering analysis of fuel cell assembly and mechanical life prediction.

Key words: proton exchange membrane fuel cell, gas diffusion layer, mechanical model, compression load, finite element analysis

中图分类号: 

  • U41

图1

质子交换膜燃料电池单体的结构组分示意图"

表1

GDL的类型及性能参数"

参数类型
HCP030NHCP030PHCP135
厚度/mm0.30±0.010.30±0.010.32±0.01
密度/(g·cm-30.780.780.78
气孔率/%757575
气阻/(mm H2O)<12<12>20

PTFE的质量

分数/%

055
CMPL

图2

力学试验示意图"

图3

HCP135的压缩数据处理"

图4

拉伸试验哑铃状试样"

图5

Abaqus仿真有限元模型"

表2

BPP和密封条的材料属性"

材料种类密度/(kg·m-3杨氏模量/MPa泊松比
SUS 3047.93×10-9194 0200.3
PMVS1.35×10-93.450.3

图6

试验工装及样本图"

图7

压缩试验结果数据及拟合曲线"

图8

拉伸试验结果数据及拟合曲线"

图9

剪切试验结果数据及拟合曲线"

图10

燃料电池仿真模型压力与压缩量关系曲线"

图11

Xiao's Model和线性模型的仿真效果对比"

1 叶跃坤, 池滨, 江世杰, 等. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
Ye Yue-kun, Chi Bin, Jiang Shi-jie, et al. Improvement of membrane electrode durability for proton exchange membrane fuel cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.
2 汪圣龙, 唐浩林, 潘牧, 等. 膜电极结构对质子交换膜燃料电池性能的影响[J]. 材料导报, 2003, 17(10): 37-40.
Wang Sheng-long, Tang Hao-lin, Pan Mu, et al. Effect of membrane electrode structure on the performance of proton exchange membrane fuel cells[J]. Materials Review, 2003, 17(10): 37-40.
3 Han K, Hong B K, Kim S H, et al. Influence of anisotropic bending stiffness of gas diffusion layers on the degradation behavior of polymer electrolyte membrane fuel cells under freezing conditions[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12317-12328.
4 Cho J, Oh H, Park J, et al. Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(1): 459-468.
5 Norouzifard V, Bahrami M. Deformation of PEM fuel cell gas diffusion layers under compressive loading: an analytical approach[J]. J Power Sources, 2014, 264: 92-99.
6 Gigos P A, Faydi Y, Meyer Y. Mechanical characterization and analytical modeling of gas diffusion layers under cyclic compression[J]. International Journal of Hydrogen Energy, 2015, 40(17): 5958-5965.
7 Xiao Y, Gao Z H, Gao F, et al. Improved analytical modeling and mechanical characterization of gas diffusion layers under compression load[J]. Energy Science Engineering, 2020, 8(8): 2799-2807.
8 Yoon W, Huang X Y. A multiphysics model of PEM fuel cell incorporating the cell compression effects[J]. Journal of The Electrochemical Society, 2010, 157(5): B680-B690.
9 Bates A, Mukherjee S, Hwang S, et al. Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2013, 38(15): 6481-6493.
10 Silberstein M N, Boyce M C. Hygro-thermal mechanical behavior of Nafion during constrained swelling[J]. Journal of Power Sources, 2011, 196(7): 3452-3460.
11 Kusoglu A, Karlsson A M, Santare M H, et al. Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle[J]. J Power Sources, 2006, 161(2): 987-996.
12 Lu Z, Kim C, Karlsson A M, et al. Effect of gas diffusion layer modulus and land-groove geometry on membrane stresses in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4646-4654.
13 Hottinen T, Himanen O, Karvonen S, et al. Inhomogeneous compression of PEMFC gas diffusion layer[J]. Journal of Power Sources, 2007, 171(1): 113-121.
14 Nitta I, Hottinen T, Himanen O, et al. Inhomogeneous compression of PEMFC gas diffusion layer[J]. Journal of Power Sources, 2007, 171(1): 26-36.
15 Herr N, Nicod J M, Varnier C. Decision process to manage useful life of multi-stacks fuel cell systems under service constraint[J]. Renewable Energy, 2017, 105:590-600.
16 Khajeh-Hosseini-Dalasm N, Sasabe T, Tokumasu T, et al. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography[J]. Journal of Power Sources, 2014, 266: 213-221.
17 Shahraeeni M, Hoorfar M. Pore-network modeling of liquid water flow in gas diffusion layers of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(20): 10697-10709.
18 Zenyuk I V, Parkinson D Y, Connolly L G, et al. Gas-diffusion-layer structural properties under compression via X-ray tomography[J]. Journal of Power Sources, 2016, 328: 364-376.
19 Straubhaar B, Pauchet J, Prat M. Water transport in gas diffusion layer of a polymer electrolyte fuel cell in the presence of a temperature gradient. Phase change effect[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11668-11675.
20 Yin Y, Wu T T, He P, et al. Numerical simulation of two-phase cross flow in microstructure of gas diffusion layer with variable contact angle[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15772-15785.
21 Vikram A, Chowdhury P R, Phillips R K, et al. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression—Part I: Electrical conductivity[J]. Journal of Power Sources, 2016, 320: 274-285.
22 Roy Chowdhury P, Vikram A, Phillips R K, et al. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression—Part II: Thermal conductivity[J]. Journal of Power Sources, 2016, 320: 222-230.
23 Garcia-Salaberri P A, Vera M, Zaera R. Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11856-11870.
24 .硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 [S].
[1] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[2] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[3] 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033.
[4] 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995.
[5] 张恒,詹志刚,陈奔,隋邦杰,潘牧. 气体扩散层各向异性传输特性的孔尺度模拟[J]. 吉林大学学报(工学版), 2022, 52(9): 2055-2062.
[6] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[7] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[8] 左建林,刘恩渤,贾政斌,徐圣昊,肖建林. 基于内侧半月板结构设计的仿生假体有限元分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2319-2324.
[9] 王新彦,江泉,吕峰,易政洋. 基于参数化模型的零转弯半径割草机侧翻稳定性[J]. 吉林大学学报(工学版), 2021, 51(5): 1908-1918.
[10] 李洪雪,李世武,孙文财,王琳虹,杨志发. 考虑垂向⁃侧向运动的半挂列车动力学建模及分析[J]. 吉林大学学报(工学版), 2021, 51(2): 549-556.
[11] 宫亚峰,宋加祥,毕海鹏,谭国金,胡国海,林思远. 装配式箱涵结构缩尺模型静载试验及有限元分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1728-1738.
[12] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[13] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[14] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!