吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 162-172.doi: 10.13229/j.cnki.jdxbgxb.20220247

• 交通运输工程·土木工程 • 上一篇    

基于微观动力学参数的高速公路特征路段事故风险分析

何杰(),张长健,严欣彤,王琛玮,叶云涛   

  1. 东南大学 交通学院,南京 210018
  • 收稿日期:2022-03-14 出版日期:2024-01-30 发布日期:2024-03-28
  • 作者简介:何杰(1973-),男,教授,博士.研究方向:道路交通安全理论与分析方法. E-mail: hejie@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52072069);东南大学优秀博士学位论文培育基金项目(YBPY2166)

Analyzing traffic crash risk of freeway characteristics based on micro⁃kinetic parameters

Jie HE(),Chang-jian ZHANG,Xin-tong YAN,Chen-wei WANG,Yun-tao YE   

  1. School of Transportation,Southeast University,Nanjing 210018,China
  • Received:2022-03-14 Online:2024-01-30 Published:2024-03-28

摘要:

为剖析高速公路不同特征路段的致险机理,在研究中引入了车辆正常行驶时的微观动力学参数,分别构建了标准有序Logit模型和二项Logit模型定量分析微观动力学参数与特征路段(分流区、合流区、曲线段等),以及微观动力学参数与事故风险之间的关系,并进一步基于模型推导分析了不同特征路段对事故风险独立的作用效能。结果表明:纵向动力学因子可以映射路段追尾事故风险的高低,而不同特征路段又可以使纵向动力学因子发生不同倾向的浮动,即可以将该因子作为风险传递的中间变量,来判定路段事故风险的高低;相较于“无分流区的直线段”,“分流区”这一复杂特征对追尾事故风险的增益作用最大,“复合线形”次之,“平曲线”最弱,且平曲线路段的缓和曲线长度越大,追尾事故风险越高;发现了显著的风险补偿现象:较为轻松的驾驶环境可能会导致驾驶员放松警觉,引起追尾事故风险上升。本文的结论可以为高速公路不同特征路段的事故预防、针对某一特定类型事故的救援措施制定提供理论支撑和经验借鉴。

关键词: 交通运输安全工程, 道路事故风险, 标准有序Logit模型, 二项Logit模型, 微观动力学参数, 道路复杂特征

Abstract:

To analyze the risk-causing mechanism of different freeway characteristics, this paper introduced the microscopic kinetic parameters of the vehicle under normal driving conditions. The standard ordered Logit model and the binary Logit model were conducted to explore the relationship between the microscopic kinetic parameters and road characteristics (e.g., diversion areas, merging areas, and curve segments); and the relationship between the microscopic kinetic parameters and crash risk (e.g. rear-end, fixed-object hitting, and overturning). Then, taking the micro-kinetic parameters as the link, the effects of different road characteristics on crash risk is independently quantified. The results indicate that the longitudinal kinetic factorcan effectively map the level of rear-end risk, and the difference in fluctuations of can be attributed to the diversity of road characteristics. That is, the longitudinal kinetic factor can be used as an intermediate variable of risk transmission to realize the determination of the level of crash risk on freeways, and at the same time, provide help for the identification of road dangerous defects. Compared with the straight-line section without a diversion area, the complex feature of the "diversion area" has the greatest effect on the added risk of rear-end crashes, followed by "composite alignment", and the "horizontal curve" is the weakest. The greater the length of the transition curve of the horizontal curve section, the higher the risk of rear-end crashes. In addition, the paper also finds a significant risk compensation phenomenon, suggesting that a more relaxed driving environment may cause drivers to relax their vigilance and increase the risk of rear-end. The conclusions can provide theoretical support and experience for the prevention of crashes and the formulation of rescue measures for a specific type of crash.

Key words: traffic and transportation safety engineering, road crash risk, standard ordered Logit model, binary Logit model, micro-kinetic parameters, freeway characteristics

中图分类号: 

  • U491.3

图1

六分力仪结构示意图"

图2

交通事故分布情况"

表1

微观动力学参数原始数据"

采集时间/sFx /kNFy /kNFz /kNTx /(N·m)Ty /(N·m)Tz /(N·m)V/(km·h-1
0-0.61-0.134.580.120.080.014105.91
0.01-0.36-0.054.590.120.080.017106.12
0.02-0.440.074.850.070.080.029106.46
0.03-0.540.024.650.110.09-0.006106.32
0.04-0.350.074.680.110.080.022105.98
0.05-0.37-0.134.530.130.090.010105.98
0.06-0.62-0.064.620.100.080.000105.98
0.07-0.62-0.174.340.150.08-0.004106.39
0.08-0.41-0.084.480.120.090.035106.53
0.09-0.340.024.500.120.080.030106.39
??

表2

路段特征变量"

简称道路特征类型变量描述
x1高程差连续变量-
x2高程标准差连续变量-
x3道路线形分类变量

x30:直线段

x31:平曲线路段

x32:复合线形路段

x4平曲线半径连续变量取对数值
x5缓和曲线长度连续变量取对数值
x6隧道分类变量

x60:不含隧道

x61:只含隧道出口

x62:只含隧道入口

x63:同时含有隧道出口和入口

x64:在隧道内部

x7沿江桥分类变量

x70:无沿江桥

x71:含有沿江桥

x8冲突区分类变量

x80:不含冲突区

x81:只含有分流区

x82:只含有合流区

x83:同时含有分流区和合流区

表3

道路特征与微观动力学参数之间的关系"

解释变量Fx,stdFy,stdFz,stdTx,stdTy,stdTz,stdVstd
x1-------
x20.072---0.069---
x3(以x30为参考)
x31--1.590--1.512-1.735--
x32-----1.939--
x4--1.142--0.900--0.833-
x5--0.298-----0.290
x6(以x60为参考)
x61---1.145---
x62-------
x63--1.440----
x64------
x71.0560.9931.379----
x8(以x80为参考)
x81-----2.076--
x82-2.14-----
x832.6902.0712.948----
u1-0.142-11.1460.113-9.322-10.905-8.443-6.725
u21.487-9.3981.774-7.644-9.249-6.715-5.086

表4

因子载荷的分布"

横向动力学因子纵向动力学因子
Fx,std0.4730.066
Fy,std0.7430.363
Tx,std0.6770.162
Ty,std0.2180.835
Tz,std0.7120.287
Vstd0.1960.826

表5

微观动力学参数与事故风险之间的关系"

变量追尾事故撞固定物事故翻车事故
系数P系数P系数P
截距-0.841***-0.170--0.468**
横向动力学因子-0.281-0.010-0.098-
纵向动力学因子-0.741***0.097-0.143-

表6

式(19)中的自变量取值情况"

序号取值情况
1x31=0,x32=0,x81=0
2x31=1,x32=0,x81=0
3x31=0,x32=1,x81=0
4x31=0,x32=0,x81=1
5x31=1,x32=0,x81=1
6x31=0,x32=1,x81=1

图3

平曲线、复合线形和分流区对追尾事故风险的增益作用"

图4

缓和曲线长度对追尾事故风险的增益作用"

表7

微观动力学参数的“纽带”作用"

道路特征纵向动力学因子追尾事故风险
Ty,stdVstd
平曲线路段减小-增加
复合线形路段减小-增加
缓和曲线长度-减小增加
分流区减小-增加
1 World Health Statistics 2019. Monitoring health for the SDGs, sustainable development goals[R]. Geneva: World Health Organization, 2019.
2 张兰芳,赵焜. 考虑货车因素的高速公路短期交通流风险预测[J]. 同济大学学报: 自然科学版, 2018, 46(2): 66-72.
Zhang Lan-fang, Zhao Kun. Short-term traffic flow risk prediction on freeways based on truck factors[J]. Journal of Tongji University(Natural Science), 2018, 46(2): 66-72.
3 孟祥海,侯芹忠,史永义,等. IHSDM高速公路事故预测模型[J]. 交通运输工程学报, 2016, 16(1): 123-132.
Meng Xiang-hai, Hou Qin-zhong, Shi Yong-yi, et al. IHSDM freeway crash prediction models[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 123-132.
4 赵跃峰,张生瑞,马壮林. 基于部分优势比的公路隧道交通事故严重程度分析模型[J]. 中国公路学报, 2018, 31(9): 159-166.
Zhao Yue-feng, Zhang Sheng-rui, Ma Zhuang-lin. Analysis of traffic crash severity on highway tunnels using the partial proportion odds model[J]. China Journal of Highway and Transport, 2018, 31(9): 159-166.
5 王雪松,徐晓妍. 基于自然驾驶数据的危险事件识别方法[J]. 同济大学学报: 自然科学版, 2020, 48(1): 51-59.
Wang Xue-song, Xu Xiao-yan. Detection of safety-critical events based on naturalistic driving data[J]. Journal of Tongji University(Natural Science), 2020, 48(1): 51-59.
6 Tefft B C. Reducing crash risk and improving traffic safety: research on driver behavior and performance[J]. Institute of Transportation Engineers, 2018, 88(8): 30-34.
7 海晶,金立生,关志伟,等. 驾驶风格对驾驶行为的影响[J]. 中国公路学报, 2018, 31(4): 18-27.
Jing Hai, Jin Li-sheng, Guan Zhi-wei, et al. Effects of driving style on driver behavior[J]. China Journal of Highway and Transport, 2018, 31(4): 18-27.
8 Zhang C J, He J, King M, et al. A crash risk identification method for freeway segments with horizontal curvature based on real-time vehicle kinetic response[J]. Crash Analysis & Prevention, 2021, 150:No.105911.
9 王露,刘玉雯,陈红. 侧风下峡谷桥隧连接段汽车的行驶特性[J]. 吉林大学学报: 工学版, 2019, 49(3): 736-748.
Wang Lu, Liu Yu-wen, Chen Hong. Cross-wind environment vehicle driving feature at canyon bridge and tunnel connection segment[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 736-748.
10 Chen J, Song J, Li L, et al. A novel pre-control method of vehicle dynamics stability based on critical stable velocity during transient steering maneuvering [J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 475-485.
11 李志刚,沈明,邹猛,等. 基于多体动力学的微型客车急转弯侧翻倾向性仿真[J]. 清华大学学报: 自然科学版, 2010, 50(8):1286-1289.
Li Zhi-gang, Shen Ming, Zou Meng, et al. Multi-body dynamics simulations for mini-bus rollover tendency during sharp turns[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(8):1286-1289.
12 吴德华,翁辉,何杰,等. 基于动力学仿真的龙泉~浦城高速公路设计方案比选[J]. 公路, 2013(9): 1-8.
Wu De-hua, Weng Hui, He Jie, et al. Longpu expressway design scheme comparison based on the dynamic simulation method[J]. Highway, 2013(9): 1-8.
13 姜康,张梦雅,陈一锴. 山区圆曲线路段半挂汽车列车行驶安全性分析[J]. 交通运输工程学报, 2015(3): 109-117.
Jiang Kang, Zhang Meng-ya, Chen Yi-kai. Driving safety analysis of semi-trailer train at circular curve section in mountain area[J]. Journal of Traffic and Transportation Engineering, 2015(3): 109-117.
14 Ferit Y. A multicriteria decision making-based methodology to identify crash-prone road sections[J]. Journal of Transportation Safety and Security, 2021, 13 (2): 143-157.
15 Liu Z Y, He J, Zhang C, et al. The impact of road alignment characteristics on different types of traffic crashs[J]. Journal of Transportation Safety & Security, 2020, 12 (5): 697-726.
16 Haghighi N, Porter R, Zhang G H, et al. Impact of roadway geometric features on crash severity on rural two-lane highways[J]. Crash Analysis & Prevention, 2018, 111: 34-42.
17 Mehri A, Sajedifar J, Abbasi M, et al. Safety evaluation of lighting at very long tunnels on the basis of visual adaptation[J]. Safety Science, 2019, 116: 196-207.
18 Zhou Z W, Ma J X, Lu T, et al. An evaluation method for visual search stability in urban tunnel entrance and exit sections based on markov chain[J]. IEEE Access, 2020, 8: 68559-68569.
19 邢璐. 基于微观轨迹数据的主线收费站分流区交通安全评价研究[D]. 南京: 东南大学交通学院, 2020.
Xing Lu. The research of traffic safety evaluation on mainline toll plaza's diverging area using microcosmic trajectory data[D]. Nanjing: School of Transportation, Southeast University, 2020.
20 Yu R J, Abdel A M. Analyzing crash injury severity for a mountainous freeway incorporating real-time traffic and weather data[J]. Safety Science,2014, 63(1): 50-56.
21 张兰芳,王淑丽,陈程,等. 基于自然驾驶数据的高速公路出口区换道风险模型[J]. 同济大学学报:自然科学版, 2019, 47(10): 1446-1453.
Zhang Lan-fang, Wang Shu-Li, Chen Cheng, et al. Lane-change risk model of freeway off-ramp areas based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2019, 47(10): 1446-1453.
22 徐进,崔强,常旭,等. 苜蓿叶形互通立交进/出口的纵向驾驶行为特征[J]. 东南大学学报: 自然科学版, 2019, 49(6): 1205-1214.
Xu Jin, Cui Qiang, Chang Xu, et al. Longitudinal driving behavior characteristics at approaching/departing areas of clover leaf interchange[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(6): 1205-1214.
23 Rusli R, Haque M, King M, et al. Single-vehicle crashes along rural mountainous highways in Malaysia: an application of random parameters negative binomial model[J]. Crash Analysis and Prevention, 2017, 102:153-164.
[1] 贺宜,孙昌鑫,彭建华,吴超仲,江亮,马明. 电动载货三轮车风险行为及影响因素分析[J]. 吉林大学学报(工学版), 2023, 53(2): 413-420.
[2] 潘恒彦,张文会,梁婷婷,彭志鹏,高维,王永岗. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报(工学版), 2023, 53(2): 457-467.
[3] 朱洁玉,马艳丽. 合流区域多车交互风险实时评估方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1574-1581.
[4] 彭涛,方锐,刘兴亮,王海玮,庞彦伟,许洪国,刘福聚,王涛. 基于典型事故场景的雪天高速换道自动驾驶策略[J]. 吉林大学学报(工学版), 2022, 52(11): 2558-2567.
[5] 程国柱,程瑞,徐亮,张文会. 基于乘员伤害分析的公路路侧事故风险评价[J]. 吉林大学学报(工学版), 2021, 51(3): 875-885.
[6] 王露,刘玉雯,陈红. 侧风下峡谷桥隧连接段汽车的行驶特性[J]. 吉林大学学报(工学版), 2019, 49(3): 736-748.
[7] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[10] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[11] 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[12] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[13] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[14] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[15] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!