吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 550-557.doi: 10.13229/j.cnki.jdxbgxb.20220409

• 通信与控制工程 • 上一篇    

基于改进混沌优化的选择性催化还原系统参数辨识方法

赵靖华1,2(),杜世豪1,刘靓葳1,3,胡云峰2,孙耀2(),解方喜2   

  1. 1.吉林师范大学 计算机学院,吉林 四平 136002
    2.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    3.长春金融高等专科学校 信息技术学院,长春 130028
  • 收稿日期:2022-04-14 出版日期:2024-02-01 发布日期:2024-03-29
  • 通讯作者: 孙耀 E-mail:zhaojh08@mails.jlu.edu.cn;syao@jlu.edu.cn
  • 作者简介:赵靖华(1980-),男,教授,博士. 研究方向:先进控制理论应用.E-mail:zhaojh08@mails.jlu.edu.cn
  • 基金资助:
    吉林省科技厅项目(20210203102SF);汽车仿真与控制国家重点实验室开放课题项目(20191201)

Parameter identification for SCR systems based on improved chaos optimization algorithm

Jing-hua ZHAO1,2(),Shi-hao DU1,Liang-wei LIU1,3,Yun-feng HU2,Yao SUN2(),Fang-xi XIE2   

  1. 1.College of Computer,Jilin Normal University,Siping 136002,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    3.College of Information Technology,Changchun Finance College,Changchun 130028,China
  • Received:2022-04-14 Online:2024-02-01 Published:2024-03-29
  • Contact: Yao SUN E-mail:zhaojh08@mails.jlu.edu.cn;syao@jlu.edu.cn

摘要:

针对选择性催化还原系统(SCR)系统在工作过程中,模型参数会受到老化、损耗等影响发生偏移,特别是催化剂硫中毒会造成氨的最大吸附能力严重下降,导致SCR系统失效的问题,提出了融合加速混沌优化和单一搜索(SCOA+SSA)算法的参数在线辨识方法。该方法能同时辨识SCR系统化学反应动力学中8项关键参数。试验结果表明:该方法能在SCR系统中氨的最大吸附能力阶跃下降时,实时辨识得到新的系统参数;并且,相比于传统的SCOA方法,本文提出的SCOA+SSA方法能将辨识精度提高5.44%,但付出的代价是增加了2.9%的耗时。

关键词: 自动控制技术, 参数在线辨识, 加速混沌优化算法, 选择性催化还原系统

Abstract:

The SCR system is an important component of the emission aftertreatment systems for diesel engines and is primarily responsible for reducing NOx emissions. With increasingly stringent emission regulations, the control technology based on precise models for SCR systems is becoming an inevitable choice. During the working process of SCR systems, the model parameters will be shifted due to aging, wear and other effects. In particular, catalyst sulfur poisoning can cause a severe drop in the maximum ammonia adsorption capacity, which can lead to the failure of the SCR system. In this paper, a stepped-up chaos optimization algorithm with single search algorithm (SCOA+SSA) is proposed to solve multi-parameter online identification for SCR systems. This method can simultaneously identify eight key parameters in the chemical reaction kinetics of the SCR system. The experimental results show that this method can identify new system parameters in real time when the maximum adsorption capacity of ammonia decreases in steps, that as compared to the traditional SCOA method, the identification accuracy of the proposed SCOA+SSA method is improved by 5.44% with a computational time penalty of 2.9%.

Key words: automatic control technology, parameter online identification, stepped-up chaos optimization algorithm, SCR systems

中图分类号: 

  • TP273

图1

SCOA+SSA算法流程图"

表1

变量命名法"

符号描述
EFv排气体积流量和SCR系统体积的比值/(m3·s-1
CNOx,inSCR系统入口NO x 浓度/(mol·m-3
CNOxSCR系统出口NO x 浓度/(mol·m-3
CNH3,inSCR系统入口NH3浓度/(mol·m-3
CNH3SCR系统出口NH3浓度/(mol·m-3
θMAXSCR催化剂的最大氨吸附能力
θcrilSCR催化器表面氨的临界覆盖度
EFM排气质量流量/(g·s-1
R气体常数
TSCR系统内部温度/°C
P0大气压/Pa
M排气摩尔质量/(g·mol-1
VSCR系统体积/L
CHNCO异氰酸浓度/(mol·m-3
E1异氰酸水解反应活化能/(J·mol-1
k1异氰酸水解反应速率因子
m1反应特性参数
r1异氰酸水解反应速率/s-1
r2NH3吸附反应速率/s-1
r3NH3解吸附反应速率/s-1
r4NO x 催化还原反应速率/s-1
r5NH3氧化反应速率/s-1

表2

待辨识参数的命名及描述"

参数描述
E2NH3吸附反应活化能
E3NH3解吸附反应活化能
E4NO x 催化还原反应活化能
E5NH3氧化反应活化能
k2NH3吸附反应速率因子
k3NH3解吸附反应速率因子
k4NO x 催化还原反应速率因子
k5NH3氧化反应速率因子

图2

SCR系统WHTC瞬态试验数据"

图3

PE工具箱与COA方法模型参数辨识结果对比"

表3

PE工具箱与COA方法辨识精准度对比"

评价指标NO x 模型精准度/%NH3模型精准度/%
PE98.5690.23
COA84.8274.97

图4

在线辨识参数流程图"

图5

参数两阶段阶跃变化条件下在线辨识结果对比"

表4

第一阶段各算法参数辨识结果"

参数COAPCOA12SCOASCOA+SSA
E2894.18600.11234.8397.48
E32.6×1065.9×1067.3×1062.7×105
E42992.072789.352793.00404.18
E516 697.7436 386.5217 167.4816 254.76
k2811.66495.33377.55264.92
k31.1×1071.8×1071.7×10641 235.36
k41.0×1061.0×1061.5×1078.5×105
k517 543.168107.4374 015.2510 042.43

表5

第一阶段各算法辨识模型精准度对比"

评价指标NO x 模型精准度/%NH3模型精准度/%
COA84.8274.97
PCOA1289.7880.59
SCOA93.8682.14
SCOA+SSA97.5190.18

表6

第二阶段各算法参数辨识结果"

参数COAPCOA12SCOASCOA+SSA
E21000.4950.41910.21030.8
E31.0e+069.6e+064.0e+051.8e+06
E44000.94233.53297.41970.1
E518 199.118 198.318 198.018 197.7
k22532.32076.67178.22059.2
k31.2e+063.0e+064090.65.7e+06
k41.2e+062.5e+061.0e+061.8e+05
k57285.07286.07285.27285.0

表7

第二阶段各算法辨识模型精准度对比"

评价指标NO x 模型精准度/%NH3模型精准度/%
COA88.1169.22
PCOA1291.0276.23
SCOA84.5875.79
SCOA+SSA83.8686.55

表8

两阶段各算法辨识模型精准度总体对比"

评价指标NO x 模型精准度/%NH3模型精准度/%
COA86.4772.10
PCOA1290.4078.41
SCOA89.2278.97
SCOA+SSA90.6988.37

图6

两阶段各算法耗时对比"

1 Zhao J H, Gong X, Hu Y F, et al. An ammonia coverage ratio observing and tracking controller: stability analysis and simulation evaluation[J]. Sci China Inf Sci, 2019, 62: 062201.
2 Zhang H, Chen P E, Wang J M, et al. Integrated study of inland-vessel diesel engine two-cell SCR systems with dynamic references[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1195-1206.
3 Zhao J H, Hu Y F, Gong X, et al. Modelling and control of urea-SCR systems through the triple-step non-linear method in consideration of time-varying parameters and reference dynamics[J]. Transactions of the Institute of Measurement Control, 2018, 40(1): 287-302.
4 Zhao J H, Zhou S T, Hu Y F, et al. Open-source dataset for control-oriented modelling in diesel engines[J]. Sci China Inf Sci, 2019, 62(7): 077201.
5 Chen P E, Wang J M. Coordinated active thermal management and selective catalytic reduction control for simultaneous fuel economy improvement and emissions reduction during low-temperature operations[J]. Dyn Syst Meas Control, 2015, 13(7): 634-641.
6 Zhao J H, Hu Y F, Gao B Z. Sequential optimization of eco-driving taking into account fuel economy and emissions[J]. IEEE Access, 2019, 4(99): 1-13.
7 Ma Y, Wang J M. Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview[J]. IEEE Trans Veh Technol, 2017, 66: 10935-10945.
8 Luo X. Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm[J]. International Journal for Light Electron Optics, 2018, 171(1): 200-203.
9 Gao F C, Han L X. Implementing the Nelder-Mead simplex algorithm with adaptive parameters[J]. Computational Optimization and Applications, 2010, 51(1): 259-277.
10 Liu Y, Heidari A, Ye X, et al. Boosting slime mould algorithm for parameter identification of photovoltaic models[J]. Energy, 2021(5): 121-128.
11 Tang Z Z, Gu Q F, Ni W, et al. Parameter identification of ship integrative load model based on improved chaos optimization algorithm[J]. Ship Science and Technology, 2017, 12(1): 56-63.
12 Yuan X F, Zhang T, Dai X S, et al. Master-slave model-based parallel chaos optimization algorithm for parameter identification problems[J]. 2016, 83(3): 1727-1741.
13 李冬琴. 加速混沌优化算法的改进及其在船型论证中的应用[J].江苏科技大学学报:自然科学版, 2010, 24(4): 5-11.
Li Dong-qin. Improvement of stepped-up chaos optimization algorithm and its application to ship demonstration[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2010, 24(4): 5-11.
14 Zhang G H, Xing K Y, Zhang G Y, et al. Memetic algorithm with meta-Lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem[J]. IEEE Access, 2020, 8: 96115-96128.
15 Lu Y T, Zhou Y Q, Wu X L. A hybrid lightning search algorithm-simplex method for global optimization[J]. Discrete Dynamics in Nature Society, 2017(2017): 1-23.
16 Kong X S, Zheng D B. A knowledge-informed simplex search method based on historical quasi-gradient estimations and its application on quality control of medium voltage insulators[J]. Processes, 2021, 9(5): 770-779.
17 Chen H, Li W, Yang X. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems[J]. Expert Systems with Applications, 2020, 158(113): 6-12.
18 Musanna F, Dangwal D, Kumar S. Novel image encryption algorithm using fractional chaos and cellular neural network[J]. Journal of Ambient Intelligence Humanized Computing, 2021(6): 1-22.
19 孙耀, 胡云峰, 周杰敏, 等. 基于分层控制器的SCR系统滚动时域优化控制方法[J]. 吉林大学学报: 工学版, 2023, 53(1): 61-71.
Sun Yao, Hu Yun-feng, Zhou Jie-min, et al. Moving horizon optimization control of SCR system based on hierarchical controller[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 61-71.
20 赵靖华, 胡云峰, 高炳到, 等. 基于尿素选择催化还原系统的氨覆盖率非线性降维观测器设计[J]. 吉林大学学报: 工学版, 2017, 49(2): 583-590.
Zhao Jing-hua, Hu Yun-feng, Gao Bing-zhao, et al. Design of nonlinear reduced-order observer for ammonia coverage based on urea-SCR systems[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 49(2): 583-590.
[1] 王守瑞,靳伍银,芮执元,张霞. 基于快速非奇异终端滑模的三维天车负载摆动控制[J]. 吉林大学学报(工学版), 2023, 53(12): 3508-3517.
[2] 孙耀,胡云峰,周杰敏,程欢,曲婷,赵靖华,陈虹. 基于分层控制器的SCR系统滚动时域优化控制方法[J]. 吉林大学学报(工学版), 2023, 53(1): 61-71.
[3] 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202.
[4] 高金武,王义琳,刘华洋,王艺达. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2156-2167.
[5] 李昂,杨泓渊,雷小萌,宋凯文,千承辉. 基于等效连杆模型的六足机器人行进姿态闭环控制[J]. 吉林大学学报(工学版), 2022, 52(7): 1696-1708.
[6] 朱航,于瀚博,梁佳辉,李宏泽. 基于电场模型的无人机搜寻改进算法及仿真分析[J]. 吉林大学学报(工学版), 2022, 52(12): 3029-3038.
[7] 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267.
[8] 许芳,张君明,胡云峰,曲婷,曲逸,刘奇芳. 智能车辆路径跟踪横纵向耦合实时预测控制器[J]. 吉林大学学报(工学版), 2021, 51(6): 2287-2294.
[9] 韩光信,赵聚乐,胡云峰. 控制输入受限的板球系统滚动线性二次型调节器控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1982-1989.
[10] 于树友,常欢,孟凌宇,郭洋,曲婷. 基于扰动观测器的轮式移动机器人滚动时域路径跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1097-1105.
[11] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[12] 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471.
[13] 刘富,安毅,董博,李元春. 基于ADP的可重构机械臂能耗保代价分散最优控制[J]. 吉林大学学报(工学版), 2020, 50(1): 342-350.
[14] 曲兴田,王学旭,孙慧超,张昆,闫龙威,王宏一. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83.
[15] 马常友, 高海波, 丁亮, 于海涛, 邢宏军, 邓宗全. 机器人末端执行器自更换机构设计及对接策略[J]. 吉林大学学报(工学版), 2019, 49(6): 2027-2037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!