吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (12): 3508-3517.doi: 10.13229/j.cnki.jdxbgxb.20220080

• 通信与控制工程 • 上一篇    

基于快速非奇异终端滑模的三维天车负载摆动控制

王守瑞1(),靳伍银1(),芮执元1,张霞2   

  1. 1.兰州理工大学 机电工程学院,兰州 730050
    2.陇东学院 电气工程学院,甘肃 庆阳 745000
  • 收稿日期:2022-01-19 出版日期:2023-12-01 发布日期:2024-01-12
  • 通讯作者: 靳伍银 E-mail:shouruiwang@126.com;wuyinjin@hotmail.com
  • 作者简介:王守瑞(1992-),男,博士研究生.研究方向:欠驱动系统控制.E-mail:shouruiwang@126.com
  • 基金资助:
    国家自然科学基金项目(12062009);甘肃省科技计划项目(21JR11RM050);兰州市科技计划项目(2023-3-105)

Payload swing control for 3D overhead crane based on fast nonsingular terminal sliding mode

Shou-rui WANG1(),Wu-yin JIN1(),Zhi-yuan RUI1,Xia ZHANG2   

  1. 1.School of Mechanical and Electrical Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.College of Electrical Engineering,Longdong University,Qingyang 745000,China
  • Received:2022-01-19 Online:2023-12-01 Published:2024-01-12
  • Contact: Wu-yin JIN E-mail:shouruiwang@126.com;wuyinjin@hotmail.com

摘要:

对于三维天车防摆控制系统易受参数摄动、外部未知干扰等不确定因素影响的问题,提出了一种基于参数自适应的快速非奇异终端滑模控制方法。针对三维天车系统动力学模型,考虑负载质量和缆绳长度时变、外部干扰等不确定性因素,基于滑模控制理论,构造了含有位移偏差和负载摆动角度的复合滑模面,设计了滑模参数自适应律,实现了控制器增益根据系统误差自动整定,保证了位移误差和摆动角度在有限时间内收敛到零。与现有控制方法仿真对比,本文控制方法可以使天车在3.5 s内到达目标位置且不发生超调,有效抑制了负载摆动,最大摆动角度不超过3°,快速消除了负载的残余摆动。结果表明,该方法改善了天车系统的动态响应性能,增强了控制系统的鲁棒性和抗干扰性。

关键词: 自动控制技术, 天车系统, 欠驱动系统, 负载摆动, 终端滑模控制, 参数自适应

Abstract:

A parameter-adaptive fast non-singular terminal sliding mode control method is proposed to address the problem of the three-dimensional overhead crane anti-sway control system, which is susceptible to unknown factors from parameter perturbations and external disturbances. Considering the uncertainties such as the time-varying of payload mass and rope length in the dynamics model of the three-dimensional overhead crane system, as well as external disturbances, this method is based on sliding mode control theory. A composite sliding surface that accounts for both position deviation and payload swing angle is constructed. Moreover, a parameter-adaptive law to automatically tune the controller gains based on the system's errors is designed and ensures that displacement errors and swing angles converge to zero within a finite time. When compared to existing control methods through simulations, the proposed method allows the overhead crane to reach the desired displacement within 3.5 s without overshooting. It effectively suppresses payload swinging, ensuring that the maximum swing angle does not exceed 3 deg. Additionally, it rapidly eliminates any residual swing of the payload. These results indicate that proposed method enhances the dynamic response performance of the overhead crane system, and improving the robustness and disturbance rejection capabilities of the control system.

Key words: automatic control technology, overhead cranesystem, underactuated system, payload swing, terminal sliding mode control, parameter self-adaption

中图分类号: 

  • TP273

图1

三维天车结构示意图"

表1

参数定义"

符号意义单位
m负载质量kg
mx小车质量kg
my小车和桥架质量之和kg
g重力加速度m/s2
θxx方向负载摆角°
θyy方向负载摆角°
l缆绳长度m
fx小车驱动力N
fy大车驱动力N

图2

控制器增益变化曲线"

图3

四种控制器仿真对比结果"

图4

性能指标评价结果"

图5

鲁棒性仿真对比"

图6

抗干扰性仿真对比"

图7

伴有初始摆角的仿真对比"

1 Zhang S, Zhu H, He X, et al. Passivity-based coupling control for underactuated three-dimensional overhead cranes[J]. ISA Transactions, 2022, 126: 352-360.
2 何博, 方勇纯, 卢彪. 针对输入时滞的桥式起重机鲁棒控制[J]. 自动化学报, 2019, 45(6): 1065-1073.
He Bo, Fang Yong-chun, Lu Biao. Robust control for an overhead crane with input delay[J]. Acta Automatica Sinica, 2019, 45(6): 1065-1073.
3 孙宁, 方勇纯, 王鹏程, 等. 欠驱动三维桥式吊车系统自适应跟踪控制器设计[J]. 自动化学报, 2010, 36(9): 1287-1294.
Sun Ning, Fang Yong-chun, Wang Peng-cheng, et al. Adaptive trajectory tracking control of underactuated 3-dimensional overhead crane systems[J]. Acta Automatica Sinica, 2010, 36(9): 1287-1294.
4 孙宁, 方勇纯, 陈鹤. 欠驱动桥式吊车消摆跟踪控制[J]. 控制理论与应用, 2015, 32(3): 326-333.
Sun Ning, Fang Yong-chun, Chen He. Antiswing tracking control for underactuated bridge cranes[J]. Control Theory & Applications, 2015, 32(3): 326-333.
5 Ramli L, Mohamed Z, Abdullahi A M, et al. Control strategies for crane systems: a comprehensive review[J]. Mechanical Systems and Signal Processing, 2017, 95: 1-23.
6 Jaafar H I, Mohamed Z, Ahmad M A, et al. Control of an underactuated double-pendulum overhead crane using improved model reference command shaping: design, simulation and experiment[J]. Mechanical Systems and Signal Processing, 2021, 151(1): No. 107358.
7 Xia X, Wu Z. Optimal motion planning for overhead cranes[J]. IET Control Theory & Applications, 2014, 8(17): 1833-1842.
8 Aguiar C, Leite D, Pereira D, et al. Nonlinear modeling and robust LMI fuzzy control of overhead crane systems[J]. Journal of the Franklin Institute, 2021, 358(2): 1376-1402.
9 Lu B, Fang Y, Sun N. Adaptive output-feedback control for dual overhead crane system with enhanced anti-swing performance[J]. IEEE Transactions on Control Systems Technology, 2020, 28(6): 2235-2248.
10 Zhang S, He X, Chen Q. Energy coupled-dissipation control for 3-dimensional overhead cranes[J]. Nonlinear Dynamics, 2020, 99(3): 2097-2107.
11 刘金琨. 滑模变结构控制Matlab仿真: 基本理论与设计方法[M]. 北京: 清华大学出版社, 2015.
12 Gu X, Xu W. Moving sliding mode controller for overhead cranes suffering from matched and unmatched disturbances[J]. Transactions of the Institute of Measurement and Control, 2022, 44(1): 60-75.
13 Tuan L A, Kim J J, Lee S G, et al. Second-order sliding mode control of a 3D overhead crane with uncertain system parameters[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(5): 811-819.
14 Le V-A, Le H-X, Nguyen L, et al. An efficient adaptive hierarchical sliding mode control strategy using neural networks for 3D overhead cranes[J]. International Journal of Automation and Computing, 2019, 16(5): 614-627.
15 Anh L V, Hai L X, Thuan V D, et al. Designing an adaptive controller for 3D overhead cranes using hierarchical sliding mode and neural network[C]∥International Conference on System Science and Engineering, Taipei, China, 2018: No.18202192.
16 Park M S, Chwa D, Eom M. Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(5): 1262-1271.
17 Tuan L A, Lee S G, Nho L C, et al. Model reference adaptive sliding mode control for three dimensional overhead cranes[J]. International Journal of Precision Engineering & Manufacturing, 2013, 14(8): 1329-1338.
18 Tsai C C, Wu H L, Chuang K H. Intelligent sliding-mode motion control using fuzzy wavelet networks for automatic 3D overhead cranes[C]∥SICE Annual Conference, Akita, Japan, 2012: No. 3055903.
19 Zhang M, Zhang Y, Chen H, et al. Model-independent PD-SMC method with payload swing suppression for 3D overhead crane systems[J]. Mechanical Systems and Signal Processing, 2019, 129: 381-393.
20 Chwa D. Sliding mode control-based robust finite-time anti-sway tracking control of 3-D overhead cranes[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6775-6784.
21 Ouyang H, Hu J, Zhang G, et al. Sliding-mode-based trajectory tracking and load sway suppression control for double-pendulum overhead cranes[J]. IEEE Access, 2019, 7: 4371-4379.
22 Zhang M, Zhang Y, Cheng X. An enhanced coupling PD with sliding mode control method for underactuated double-pendulum overhead crane systems[J]. International Journal of Control, Automation and Systems, 2019, 17(6): 1579-1588.
23 Wang T, Tan N, Zhang X, et al. A time-varying sliding mode control method for distributed-mass double pendulum bridge crane with variable parameters[J]. IEEE Access, 2021, 9: 75981-75992.
24 Almutairi N B, Zribi M. Sliding mode control of a three-dimensional overhead crane[J]. Journal of Vibration & Control, 2009, 15(11): 1679-1730.
25 刘洋, 井元伟, 刘晓平, 等. 非线性系统有限时间控制研究综述[J]. 控制理论与应用, 2020, 37(1): 1-12.
Liu Yang, Jing Yuan-wei, Liu Xiao-ping, et al. Survey on finite-time control for nonlinear systems[J]. Control Theory & Applications, 2020, 37(1): 1-12.
26 王伟, 赵健廷, 胡宽荣, 等. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J].吉林大学学报: 工学版, 2020, 50(2): 464-471.
Wang Wei, Zhao Jian-ting, Hu Kuan-rong, et al. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 464-471.
27 Zhou M, Sun N, Chen H, et al. A novel sliding mode control method for underactuated overhead cranes[C]∥Chinese Automation Congress, Jinan, China, 2017: No. 17469598.
28 Wu X, He X. Partial feedback linearization control for 3-D underactuated overhead crane systems[J]. ISA Transactions, 2016, 65: 361-370.
[1] 孙耀,胡云峰,周杰敏,程欢,曲婷,赵靖华,陈虹. 基于分层控制器的SCR系统滚动时域优化控制方法[J]. 吉林大学学报(工学版), 2023, 53(1): 61-71.
[2] 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202.
[3] 高金武,王义琳,刘华洋,王艺达. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2156-2167.
[4] 李昂,杨泓渊,雷小萌,宋凯文,千承辉. 基于等效连杆模型的六足机器人行进姿态闭环控制[J]. 吉林大学学报(工学版), 2022, 52(7): 1696-1708.
[5] 朱航,于瀚博,梁佳辉,李宏泽. 基于电场模型的无人机搜寻改进算法及仿真分析[J]. 吉林大学学报(工学版), 2022, 52(12): 3029-3038.
[6] 陈菲,杨峥,张志成,罗巍. 面向无标签数据的旋转机械故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(11): 2514-2522.
[7] 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267.
[8] 许芳,张君明,胡云峰,曲婷,曲逸,刘奇芳. 智能车辆路径跟踪横纵向耦合实时预测控制器[J]. 吉林大学学报(工学版), 2021, 51(6): 2287-2294.
[9] 韩光信,赵聚乐,胡云峰. 控制输入受限的板球系统滚动线性二次型调节器控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1982-1989.
[10] 董延华,刘靓葳,赵靖华,李亮,解方喜. 基于BPNN在线学习预测模型的扭矩实时跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(4): 1405-1413.
[11] 于树友,常欢,孟凌宇,郭洋,曲婷. 基于扰动观测器的轮式移动机器人滚动时域路径跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1097-1105.
[12] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[13] 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471.
[14] 刘富,安毅,董博,李元春. 基于ADP的可重构机械臂能耗保代价分散最优控制[J]. 吉林大学学报(工学版), 2020, 50(1): 342-350.
[15] 曲兴田,王学旭,孙慧超,张昆,闫龙威,王宏一. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!