吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1038-1044.doi: 10.13229/j.cnki.jdxbgxb.20220671

• 交通运输工程·土木工程 • 上一篇    

基于改进高斯混合粒子滤波新算法的桥梁极值应力动态预测

樊学平1,2(),刘月飞1,2   

  1. 1.兰州大学 西部灾害与环境力学教育部重点实验室,兰州 730000
    2.兰州大学 土木工程与力学学院,兰州 730000
  • 收稿日期:2022-05-23 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:樊学平(1983-),男,副教授,博士.研究方向:桥梁结构安全预后与损伤预后. E-mail: fanxp@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51608243);甘肃省自然科学基金项目(1606RJYA246)

Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm

Xue-ping FAN1,2(),Yue-fei LIU1,2   

  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China of the Ministry of Education,Lanzhou University,Lanzhou 730000,China
    2.School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730000,China
  • Received:2022-05-23 Online:2024-04-01 Published:2024-05-17

摘要:

将极值应力数据视为时间序列,提出了桥梁结构极值应力的改进高斯混合粒子滤波(IGMPF)动态预测新方法。首先,利用桥梁健康监测极值应力数据建立动态非线性模型,将其作为粒子滤波算法的状态方程和监测方程;然后,引入最大期望(EM)算法来估计目标状态的概率分布,并嵌入高斯混合粒子滤波器中,进而利用改进高斯混合粒子滤波算法,结合应力监测数据实现结构极值应力的动态预测;最后,通过在役桥梁监测数据对本文模型和方法的合理性进行验证。结果表明:本文方法预测精度高,可用于工程实际应用中。

关键词: 结构工程, 极值应力, 动态非线性模型, 最大期望算法, 高斯混合粒子滤波器

Abstract:

The extreme stress data is taken as a time series, an improved Gaussian mixed particle filter(IGMPF) dynamic prediction new approach of bridge extreme stresses is proposed. Firstly, the dynamic nonlinear model, which provides state equation and monitored equation for the particle filter, is built with the monitored bridge extreme stress data; then, the EM algorithm is introduced to estimate the probability density function(PDF) of the target state and embedded in the Gaussian mixed particle filter(GMPF); further, with the IGMPF prediction approach, structural stresses are dynamically predicted based on the monitored extreme stress data; finally, the monitored stress data of an actual bridge is provided to illustrate the feasibility and application of the proposed models and methods. The result shows that the proposed algorithm has good prediction accuracy, can apply to real engineering.

Key words: structural engineering, extreme stress, dynamic nonlinear model, expectation maximization algorithm, Gaussian mixed particle filter

中图分类号: 

  • TU391

图1

本文算法流程"

图2

D截面位置示意图"

图3

监测极值应力信息"

图4

初始信息与监测信息"

图5

监测应力的预测结果"

图6

连续50次滤波的预测均方误差"

1 Bao Y Q, Beck J L, Li H. Application compressive sampling for accelerometer signals used in structural health monitoring[C]∥The 8th International Conference on Damage Assessment of Structures, Beijing, China, 2009: 455-462.
2 Zhang Y, Li J. Wavelet-based vibration sensor data compression technique for civil infrastructure condition monitoring[J]. Journal of Computing in Civil Engineering, 2006, 20(6): 390-399.
3 Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
4 李惠, 周文松, 欧进萍, 等. 大型桥梁结构智能健康监测系统集成技术研究[J]. 土木工程学报, 2006, 39(2): 46-52.
Li Hui, Zhou Wen-song, Jin-ping Ou, et al. A study on system integration technique of intelligent monitoring systems for soundness of long-span bridges[J]. China Civil Engineering Journal, 2006, 39(2): 46-52.
5 李爱群, 缪长青, 李兆霞, 等. 润扬长江大桥结构健康监测系统研究[J]. 东南大学学报, 2003, 33(5): 544-548.
Li Ai-qun, Miao Chang-qing, Li Zhao-xia, et al. Health monitoring system for the Runyang Yangtse River Bridge[J]. Journal of Southeast University, 2003, 33(5): 544-548.
6 宗周红, 褚福鹏, 牛杰. 基于响应面模型修正的桥梁结构损伤识别方法[J]. 土木工程学报, 2013(2):115-122.
Zong Zhou-hong, Chu Fu-peng, Niu Jie. Damage identification methods of bridge structures using response surface based on finite element model updating[J]. China Civil Engineering Journal, 2013, 46(2):115-122.
7 宗周红, 周儒勉, 郑沛娟. 基于健康监测的桥梁结构损伤预后和安全预后研究进展及挑战[J]. 中国公路学报, 2014, 27(12): 46-57.
Zong Zhou-hong, Zhou Ru-mian, Zheng Pei-juan. Damage and safety prognosis of bridge structures based on structural health monitoring: progress and challenges[J]. China Journal of Highway and Transport, 2014, 27(12): 46-57.
8 魏锦辉, 任伟新. 基于响应面方法的桥梁静动力有限元模型修正[J]. 公路交通科技, 2015, 32(2): 68-73.
Wei Jin-hui, Ren Wei-xin. Static and dynamic bridge finite element model updating based on response surface method[J]. Journal of Highway and Transportation Research and Development, 2015, 32(2): 68-73.
9 Abudayyeh O Y, Barbera J, Abdelqader I, et al. Towards sensor-based health monitoring systems for bridge decks: a full-depth precast deck panels case study[J]. Advances in Civil Engineering, 2015, 2010(1): 1-14.
10 赵卓. 基于ARMA模型的伊通河桥监测数据建模与可靠度分析[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2012
Zhao Zhuo. Health monitoring data modeling and reliability analysis for Yitong river bridge based on ARMA model[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2012.
11 樊学平. 基于验证荷载和监测数据的桥梁可靠性修正与贝叶斯预测[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2014.
Fan Xue-ping. Bridge reliability updating and Bayesian prediction based on proof loads and monitored data[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2014.
12 Fan X P. Bridge extreme stress prediction based on Bayesian dynamic linear models and non-uniform sampling[J]. Structural Health Monitoring, 2017, 16(3): 253-261.
13 Han H, Ding Y S, Hao K R, et al. An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking[J]. Computers & Mathematics with Applications, 2011, 62(7): 2685-2695.
14 樊学平, 刘月飞, 吕大刚. 应用高斯粒子滤波器的桥梁可靠性在线预测[J]. 哈尔滨工业大学学报, 2016, 48(6): 164-169.
Fan Xue-ping, Liu Yue-fei, Da-gang Lyu. On-line reliability prediction of bridges based on Gaussian particle filter[J]. Journal of Harbin Institute of Technology, 2016, 48(6): 164-169.
15 樊学平, 刘月飞, 吕大刚. 桥梁极值应力的改进高斯混合粒子滤波器动态预测[J]. 同济大学学报: 自然科学版, 2016, 44(11): 1660-1666.
Fan Xue-ping, Liu Yue-fei, Da-gang Lyu. Improved Gaussian mixed particle filter dynamic prediction of bridge monitored extreme stress[J]. Journal of Tongji University, 2016, 44(11): 1660-1666.
16 Fan X P, Liu Y F. Dynamic extreme stress prediction of bridges based on nonlinear mixed Gaussian particle filtering algorithm and structural health monitoring data[J]. Advances in Mechanical Engineering, 2016, 8(6): 1-10.
17 Kushary D. The EM algorithm and extensions[J]. Technometrics, 1997, 40(3): 260-260.
18 于金霞, 刘文静, 汤永利. 粒子滤波重采样算法研究[J]. 微计算机信息, 2010, 26(16): 44-45.
Yu Jin-Xia, Liu Wen-jing, Tang Yong-li. Study on the resampling algorithms of particle filter[J]. Microcomputer Information, 2010, 26(16): 44-45.
[1] 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015.
[2] 樊学平,周衡,刘月飞. 基于Gaussian Copula-贝叶斯动态模型的桥梁构件时变可靠性分析[J]. 吉林大学学报(工学版), 2024, 54(2): 485-493.
[3] 范亮,徐英铭,谭阳. 集束群钉式装配组合梁界面滑移计算[J]. 吉林大学学报(工学版), 2023, 53(9): 2533-2541.
[4] 樊学平,周衡,刘月飞. 桥梁时变可靠性的多过程贝叶斯动态混合预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2332-2338.
[5] 熊二刚,巩忠文,罗佳明,范团结. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104.
[6] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[7] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[8] 戴理朝,周亮,杨晓文,王磊. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(10): 2886-2896.
[9] 褚云朋,孙鑫晖,李明,姚勇,黄汉杰. 下击暴流作用下圆形马鞍面屋盖风压特性[J]. 吉林大学学报(工学版), 2022, 52(8): 1826-1833.
[10] 姚勇,苏留锋,李明,褚云朋,黄汉杰. 下击暴流作用下双面球壳型屋面风载特性[J]. 吉林大学学报(工学版), 2022, 52(3): 615-625.
[11] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[12] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[13] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[14] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
[15] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!