吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3231-3243.doi: 10.13229/j.cnki.jdxbgxb.20230024

• 交通运输工程·土木工程 • 上一篇    

基于可解释机器学习的锈蚀RC构件抗剪承载力预测模型

戴理朝1,2(),王冲1,袁平1,王磊1()   

  1. 1.长沙理工大学 土木工程学院,长沙 410114
    2.长沙理工大学 南方地区桥梁长期性能提升技术国家地方联合工程实验室,长沙 410114
  • 收稿日期:2023-01-03 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 王磊 E-mail:lizhaod@csust.edu.cn;leiwang@csust.edu.cn
  • 作者简介:戴理朝(1989-),男,副教授,博士. 研究方向:桥梁耐久性.E-mail:lizhaod@csust.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600900);国家自然科学基金项目(52278140);湖南省自然科学基金项目(2020JJ1006);南方地区桥梁长期性能提升技术国家地方联合工程实验室(长沙理工大学)项目(22KE02);长沙理工大学专业学位研究生实践创新与创业能力提升项目(SJCX202123)

Prediction model for shear capacity of corroded RC beams based on interpretable machine learning

Li-zhao DAI1,2(),Chong WANG1,Ping YUAN1,Lei WANG1()   

  1. 1.School of Civil Engineering,Changsha University of Science & Technology,Changsha 410114,China
    2.National-Local Joint Laboratory of Engineering Technology for Long-term Performance Enhancement of Bridges in Southern District,Changsha University of Science & Technology,Changsha 410114,China
  • Received:2023-01-03 Online:2024-11-01 Published:2025-04-24
  • Contact: Lei WANG E-mail:lizhaod@csust.edu.cn;leiwang@csust.edu.cn

摘要:

基于机理方法推导的锈蚀钢筋混凝土(RC)构件抗剪承载力模型通常引入一系列假定与修正系数,导致计算结果精度不高和适用性有限。本文基于数据驱动,考虑黑箱模型的可信度与输入特征的合理性,选择锈蚀RC构件的几何尺寸、纵筋配筋率、箍筋屈服强度、箍筋锈蚀率、混凝土强度等关键基本特征,建立了基于可解释机器学习算法的实用模型。结果表明,所有基本特征中锈蚀率、有效高度、剪跨比与梁宽对抗剪承载力较为敏感;本预测模型阐明了锈蚀RC构件关键基本参数与抗剪承载力间显性映射关系,相较于经验模型与黑箱模型,它具有较高的透明度与预测精度。

关键词: 土木工程, RC构件, 锈蚀, 抗剪承载力, 可解释机器学习, 特征选择

Abstract:

The prediction model for shear capacity of corroded reinforced concrete (RC) beams based on the mechanism method usually introduces a series of assumptions and correction coefficients, resulting in low accuracy of calculation results and limited applicability. In the present study, based on the data drive, considering the reliability of the black box model and the rationality of the input features, the key basic characteristics of the corroded RC beams, such as geometric dimensions, longitudinal reinforcement ratio, stirrup yield strength, stirrup corrosion loss, and concrete strength, were selected. A practical model of shear capacity based on an interpretable machine learning algorithm was established. The results show that the corrosion loss, effective height, shear-to-span ratio and beam width are sensitive to the structural shear capacity. The practical model of shear capacity of corroded RC beams based on the data-driven can reveal the underlying mapping relationship between the basic features and the shear capacity. The proposed model have good applicability and prediction accuracy compared with the empirical model and black box model.

Key words: civil engineering, RC beams, corrosion, shear capacity, interpretability machine learning, feature selection

中图分类号: 

  • TU375.1

表1

锈蚀钢筋混凝土梁抗剪试验数据"

学者fc/MPab/mmh0/mmρl/mmρv/%fyv/kNAsv/mm2s/mmληl/%ηw/%Vu/kN加载方式
薛昕等315.8~18.81202202.170.39300571201.5~3.20~17.30~16.770.5~124.3单点
柳世涛2719.5~23.92002652.150.14~0.25339~52457~101150~2502~3.50~12.10~60.193.8~181.5双点
Xia等2812.971202002.620.48~0.56321~46357~101100~1501.500~54.285.2~138.2双点
霍飞格2916.8~17.62504751.630.08~0.13331~33743~662001.7400~36.3205.8~275.6双点
赵冰等309.51001751.940.44324661501.5~2.504~23.341.9~53.0双点
杨晓明等3115.8~18.71202202.170.39300571201.5~3.20~17.30~16.870.5~123.3双点
李冰等3218.3~26.71501502.680.19~0.25444.1557150~2002.0~3.00~26.20~32.752.1~78.2双点
赵羽习等911.91501552.26~2.790.19~0.45331.5266~101100~2002.2~3.10~26.00~9.240.0~72.0单点
李学田等3318.11501752.30.25275571501.5~2.20~3.40~2.875.9~131.0单点
霍艳华49.2~12.81001751.940.44324661501.5~2.50~20.03.0~30.841.9~53.0双点
祝建军3417.91001752.0600001.5~2.50~12.5019.3~44.2双点
Higgins等3517.6~20.02545211.900.16~0.20585101203~3052.0400~42.5324.0~475.2双点
王小惠等3617.01501701.5800003.971.0~4.7024.4~36.3双点
徐善华等815.1~16.31202001.920.32275571501~200~38.757.7~146.8双点
Rodriguez等214.31501701.770.226265785~1704.719.0~31.90~93.827.7~38.6双点

图1

输入与输出变量样本分布"

图2

不同机器学习RC梁抗剪承载力预测"

表2

各机器学习模型抗剪承载力预测精度对比"

数据集模型指标
R2MAEMAPE/%RMSE

训练

结果

RF0.9904.1024.6267.17
XGBoost0.9981.3671.5722.90
MLP0.9953.2853.9405.204
SVR0.9933.0033.4386.252

测试

结果

RF0.96612.99514.77420.133
XGBoost0.98210.06310.83614.887
MLP0.9829.85012.55714.634
SVR0.9858.83410.56813.344

图3

置换特征重要性"

图4

SHAP计算示意图"

图5

SHAP全局分析图"

表3

各训练模型的特征重要性排序"

训练

模型

特征重要性排序
1234567891011
RFh0bλfcfyvρvηwAsvρlsηl
46.3%14.7%12.7%6.9%6.6%4.4%2.9%2.0%1.9%0.9%0.7%
XGBoosth0bληwfcηlρlfyvρvsAsv
32.6%24.7%21.4%4.6%3.8%3.2%3.2%3.1%1.7%1.1%0.6%
SVRh0λbρlηwAsvfyvηlsρvfc
24.8%20.3%19.1%7.0%5.8%5.1%4.5%3.7%3.6%3.2%2.9%

图6

GP符号回归过程"

表4

RC构件抗剪承载力计算模型"

作者计算模型
李士斌等1集中荷载下的梁:Vcs=1.75ftbch0c1+λ+fyvcAsvch0cs,矩形截面梁:Vcs=0.7ftbch0c+1.25fyvAsvh0cs
Ahmed K47Vcs=0.17λfc'beffh0+Av,efffyvh0s
赵羽习等9Vcs=PvVcs0,Pv=1.0,??????????????ηw10%1.17-1.7ηw,ηw>10%,VCS0=bh0λCsh01-0.5Csh0fc'+0.5ρvfyv1-Csh02λ2
霍艳华4Vcs=φ1.751+λftbh0+γAsvfyvh0s,φ=1.0,?????????????????ηl5%1.098-1.96ηl,ηl>5%,γ=1-1.059ηw

表5

RC构件抗剪承载力各计算模型评价指标"

评价指标李士斌等1Ahmed K47赵羽习等9霍艳华4本文模型SVRMLPXGBoostRF
μ1.580.942.131.990.890.960.960.960.92
RMSE61.4649.3792.0768.525.613.314.614.920.1
MAE41.8837.765.1347.5317.88.89.910.113.0
MAPE/%36.5064.6157.9140.5220.6810.5712.5610.8414.77
R20.8440.8980.6530.8070.9480.9850.9820.9820.966

图7

RC构件抗剪承载力计算模型拟合效果图"

1 李士彬, 张鑫, 贾留东, 等. 箍筋锈蚀钢筋混凝土梁的抗剪承载力分析[J]. 工程力学, 2011, 28(S1): 60-63.
Li Shi-bin, Zhang Xin, Jia Liu-dong, et al. Analysis for shear capacity of reinforced concrete beams with corrosion stirrups[J]. Engineering Mechanics, 2011, 28(S1): 60-63.
2 Rodriguez J, Ortega L M, Casal J. Load carrying capacity of concrete structures with corroded reinforcement[J]. Construction and Building Materials, 1997, 11(4): 239-248.
3 薛昕, 杨成. 纵向受拉钢筋锈蚀钢筋混凝土梁的抗剪性能[J]. 上海交通大学学报, 2016, 50(11): 1767-1772.
Xue Xin, Yang Cheng. Shear performance of reinforced concrete beams containing corroded longitudinal bars[J]. Journal of Shanghai Jiaotong University, 2016, 50(11): 1767-1772.
4 霍艳华. 锈蚀钢筋混凝土简支梁受剪承载力研究[J]. 工业建筑, 2006, 36(z1): 910-912.
Huo Yan-hua. Research on shear capacity of simply supported concrete beam with corroded reinforcement[J]. Industrial Construction, 2006, 36(z1): 910-912.
5 梁兴文, 汪萍, 徐明雪, 等. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
Liang Xing-wen, Wang Ping, Xu Ming-xue, et al. Investigation on flexural capacity of reinforced ultra high performance concrete beams[J]. Engineering Mechanics, 2019, 36(5): 110-119.
6 何世钦, 贡金鑫. 钢筋混凝土梁中锈蚀钢筋粘结性能的试验研究[J]. 哈尔滨工业大学学报, 2006, 38(12): 2167-2170.
He Shi-qin, Gong Jin-xin. Experimental studies on bond characteristics of corroded steel bar in reinforced concrete beams[J]. Journal of Harbin Institute of Technology, 2006, 38(12): 2167-2170.
7 戴理朝, 周亮, 杨晓文, 等. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报: 工学版, 2023, 53(10): 2886-2896.
Dai Li-chao, Zhou Liang, Yang Xiao-wen, et al. Microscopic numerical simulation of interface bond performance of corroded RC beam based on connector element[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(10): 2886-2896.
8 徐善华, 牛荻涛. 锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J]. 建筑结构学报, 2004, 25(5): 98-104.
Xu Shan-hua, Niu Di-tao. The shear behavior of corroded simply supported reinforced concrete beam[J]. Journal of Building Structures, 2004, 25(5): 98-104.
9 赵羽习, 金伟良. 锈蚀箍筋混凝土梁的抗剪承载力分析[J]. 浙江大学学报: 工学版, 2008, 42(1): 19-24.
Zhao Yu-xi, Jin Wei-liang. Analysis on shearing capacity of concrete beams with corroded stirrups[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1): 19-24.
10 卢朝辉, 李海, 赵衍刚, 等. 锈蚀钢筋混凝土梁抗剪承载力预测经验模型[J]. 工程力学, 2015, 32(z1): 261-270.
Lu Zhao-hui, Li Hai, Zhao Yan-gang, et al. An empirical model for shear strength prediction of corroded RC beams[J]. Engineering Mechanics, 2015, 32(z1): 261-270.
11 金浏, 王涛, 杜修力. 无腹筋RC悬臂梁抗剪强度及尺寸效应理论研究[J]. 计算力学学报, 2020, 37(4): 396-404.
Jin Liu, Wang Tao, Du Xiu-li. Size effect theory on shear strength of RC cantilever beams without stirrups[J]. Chinese Journal of Computational Mechanics, 2020, 37(4): 396-404.
12 Huang H, Burton H V. Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning[J]. Journal of Building Engineering, 2019, 25: No.100767.
13 Mangalathu S, Jeon J S. Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques[J]. Engineering Structures, 2018, 160: 85-94.
14 Mangalathu S, Jeon J S. Machine learning–based failure mode recognition of circular reinforced concrete bridge columns: comparative study[J]. Journal of Structural Engineering, 2019, 145(10): No. 04019104.
15 Mangalathu S, Jeon J S, DesRoches R. Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(3): 784-801.
16 Feng D C, Liu Z T, Wang X D, et al. Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm[J]. Advanced Engineering Informatics, 2020, 45: No.101126.
17 Fu B, Feng D C. A machine learning-based time-dependent shear strength model for corroded reinforced concrete beams[J]. Journal of Building Engineering, 2021, 36: No.102118.
18 Nguyen T H, Nguyen D T, Nguyen D H, et al. Evaluation of residual strength of corroded reinforced concrete beams using machine learning models[J]. Arabian Journal for Science and Engineering, 2022, 47(8): 9985-10002.
19 Hoang N D, Tran X L, Nguyen H. Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model[J]. Neural Computing and Applications, 2020, 32: 7289-7309.
20 Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C]∥Advances in Neural Information Processing Systems, Long Beach, USA, 2017: 4765-4774.
21 Koza J R. Genetic programming as a means for programming computers by natural selection[J]. Statistics and Computing, 1994, 4: 87-112.
22 Mangalathu S, Hwang S H, Jeon J S. Failure mode and effects analysis of RC members based on machine-learning-based shapley additive explanations(SHAP) approach[J]. Engineering Structures, 2020, 219: No.110927.
23 冯德成, 吴刚. 混凝土结构基本性能的可解释机器学习建模方法[J]. 建筑结构学报, 2022, 43(4): 228-238.
Feng De-cheng, Wu Gang. Interpretable machine learning-based modeling approach for fundamental properties of concrete structures[J]. Journal of Building Structures, 2022, 43(4): 228-238.
24 Chaabene W B, Nehdi M L. Genetic programming based symbolic regression for shear capacity prediction of SFRC beams[J]. Construction and Building Materials, 2021, 280: No.122523.
25 Gandomi A H, Alavi A H, Mohammadzadeh S D, et al. An empirical model for shear capacity of RC deep beams using genetic-simulated annealing[J]. Archives of Civil and Mechanical Engineering, 2013, 13: 354-369.
26 Jeong H, Han S J, Choi S H, et al. Genetic programming approach and data generation for transfer lengths in pretensioned concrete members[J]. Engineering Structures, 2021, 231: No.111747.
27 柳世涛. 受腐蚀钢筋混凝土梁抗剪性能研究[D]. 长沙: 中南大学土木工程学院, 2013.
Liu Shi-tao. Research on shear behavior of corroded RC beams[D]. Changsha: School of Civil Engineering, Central South University, 2013.
28 Xia J, Jin W, Li L. Shear performance of reinforced concrete beams with corroded stirrups in chloride environment[J]. Corrosion Science, 2011, 53(5): 1794-1805.
29 翟飞格. 箍筋锈蚀配斜筋RC梁抗剪承载力研究[D]. 长沙: 长沙理工大学土木工程学院, 2010.
Zhai Fei-ge. The research on shear capacity of corroded stirrups RC beams with diagonal reinforcement[D]. Changsha: School of Civil Engineering, Changsha University of Science and Technology, 2010.
30 赵冰, 曾凡振. 锈蚀箍筋混凝土简支梁抗剪承载力模型及有限元分析[J]. 中国农村水利水电, 2010, 2010(10): 88-91.
Zhao Bing, Zeng Fan-zhen. The model and finite element analysis of shear capacity of simply supported concrete beam with corroded stirrup[J]. China Rural Water and Hydropower, 2010, 2010(10): 88-91.
31 杨晓明, 吴桐, 王耀耀. 小剪跨比锈蚀钢筋混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2019, 40(12): 147-154.
Yang Xiao-ming, Wu tong, Wang Yao-yao. Experimental study on shear behavior of corroded reinforced concrete beams with low shear span ratio[J]. Journal of Building Structures, 2019, 40(12): 147-154.
32 李冰, 高向华, 王小惠, 等. 局部区段锈蚀的钢筋混凝土梁抗剪承载力试验研究[J]. 混凝土与水泥制品, 2010, 2010(6): 60-65.
Li Bing, Gao Xiang-hua, Wang Xiao-hui, et al. Experimental study on shear capacity of reinforced concrete beams with local section corrosion[J]. Concrete and Cement Products, 2010, 2010(6): 60-65.
33 李学田, 殷惠光. 锈蚀钢筋混凝土梁抗剪能力退化机理和预计模型[J]. 徐州工程学院学报: 自然科学版, 2010, 25(4): 58-63.
Li Xue-tian, Yin Hui-guang. Degradation mechanism and predicting models of shearing capacity for corroded reinforced concrete beams[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2010, 25(4): 58-63.
34 祝建军. 纵筋锈蚀对无腹筋梁斜截面受剪承载力的影响[D]. 南昌: 南昌大学建筑工程学院, 2007.
Zhu Jian-jun. Effect of corroded longitutal reinforcements on shear capacity of simple supported concrete beam without stirrups[D]. Nanchang: School of Civil Engineering and Architecture, Nanchang University, 2007.
35 Higgins C, Farrow W C. Tests of reinforced concrete beams with corrosion-damaged stirrups[J]. ACI Materials Journal, 2006, 103(1): 133-141.
36 王小惠, 刘西拉. 基于粘结强度变化的锈蚀无腹筋梁承载能力的研究[J]. 四川建筑科学研究, 2007, 33(3): 56-61.
Wang Xiao-hui, Liu Xi-la. Research on load carrying capacity of corroded RC beam without web reinforcement on the basis of the change of bond strength[J]. Sichuan Building Science, 2007, 33(3): 56-61.
37 . 混凝土结构设计规范 [S].
38 Liaw A, Wiener M. Classification and regression by random forest[J]. R News, 2002, 2(3): 18-22.
39 Safavian S R, Landgrebe D. A survey of decision tree classifier methodology[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3): 660-674.
40 Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
41 Chen T, Guestrin C. Xgboost: a scalable tree boosting system[C]∥Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785-794.
42 Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
43 Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28.
44 Friedman J H. On bias, variance, 0/1—loss, and the curse-of-dimensionality[J]. Data Mining and Knowledge Discovery, 1997, 1: 55-77.
45 Kuhn M, Johnson K. Feature Engineering and Selection: A Practical Approach for Predictive Models[M]. Boca Raton: Chapman & Hall/CRC Press, 2019.
46 Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
47 Elsayed A K. Shear capacity assessment of reinforced concrete beams with corroded stirrups[J]. Construction and Building Materials, 2017, 134: 176-184.
[1] 王福成,赵欣荣,田家冰,解国梁,周立明. 水稻秸秆灰对混凝土抗压性能及微观结构的影响[J]. 吉林大学学报(工学版), 2024, 54(9): 2620-2630.
[2] 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015.
[3] 冯琼,田浩正,乔宏霞,念腾飞,韩文文. 自然暴露与盐雾加速环境下钢筋混凝土劣化规律及等效关系[J]. 吉林大学学报(工学版), 2024, 54(2): 494-505.
[4] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[5] 孙敏,朱远恒,高鹏真,李振东,方有珍. 多降雨环境下锈蚀钢筋混凝土柱装配节点抗震性监测[J]. 吉林大学学报(工学版), 2024, 54(12): 3545-3551.
[6] 周丰丰,于涛,范雨思. 基于质谱数据的生成对抗自编码器整合投票算法[J]. 吉林大学学报(工学版), 2024, 54(10): 2969-2977.
[7] 陈文杰,苏振兴,孙先涛,刘远远,胡祥涛,智亚丽. 噪声环境下外骨骼设备语音信号的特征提取[J]. 吉林大学学报(工学版), 2024, 54(10): 3050-3057.
[8] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[9] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[10] 闫清峰,张纪刚,王涛,陈德刚,郁有升,杨迎春. 预制预装修模块化建筑连接节点抗震性能[J]. 吉林大学学报(工学版), 2023, 53(2): 505-514.
[11] 周丰丰,颜振炜. 基于混合特征的特征选择神经肽预测模型[J]. 吉林大学学报(工学版), 2023, 53(11): 3238-3245.
[12] 戴理朝,周亮,杨晓文,王磊. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(10): 2886-2896.
[13] 郭辉,付接递,李振东,严岩,李虓. 基于改进鲸鱼算法优化SVM参数和特征选择[J]. 吉林大学学报(工学版), 2023, 53(10): 2952-2963.
[14] 李佩泽,赵世舜,翁小辉,蒋鑫妹,崔洪博,乔建磊,常志勇. 基于多传感器优化的农药残留快速检测新方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1951-1956.
[15] 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!