吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1483-1496.doi: 10.13229/j.cnki.jdxbgxb.20240722

• 综述 •    下一篇

四足机器人运动及稳定控制关键技术综述

王旭()   

  1. 北京科技大学 创新创业学院,北京 100083
  • 收稿日期:2024-06-29 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:王旭(1979-),男,研究员,博士.研究方向:机器人技术及应用.E-mail:wangxu@ustb.edu.cn
  • 基金资助:
    中央高校基本科研业务费项目(YWF-23-L-912)

An overview of key technologies for quadruped robot motion and stability control

Xu WANG()   

  1. School of Innovation and Entrepreneurship,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2024-06-29 Online:2025-05-01 Published:2025-07-18

摘要:

本文在分析四足机器人主要研究内容的基础上,基于四足机器人运动及稳定控制要求,对四足机器人的机构设计、运动学与动力学分析、步态与足端轨迹规划、关节驱动器、运动稳定控制等关键技术进行了梳理与总结,构建了各技术模块之间的逻辑关系,系统阐述了四足机器人运动及稳定控制架构,可为足式机器人研究者提供参考。

关键词: 四足机器人, 动力学建模, 最优足底力优化, 模型预测控制

Abstract:

This paper analyses the main research on quadruped robots,based on the motion and stability control requirements of quadrupedal robots, the key technologies of quadrupedal robots, such as mechanism design, kinematics and dynamics analysis, gait and foot trajectory planning, joint actuators, motion stability control, etc., are sorted out and summarised, and the logical relationship between each technology module is constructed, so as to systematically illustrate the motion and stability control architecture of quadrupedal robots, which can be used as reference for the researchers of foot-type robots.

Key words: quadruped robot, dynamics modeling, optimal foot force optimization, model predictive control

中图分类号: 

  • TP242

图1

马在不同速度下单位距离氧气消耗量变化示意图"

图2

四足机器人串联腿拓扑结构"

图3

机器人静力学、运动学和动力学参数之间关系图"

表1

步态-负载因子、相位差对应关系"

步态β相位差(?i :相位)
左前腿左后腿右前腿右后腿
爬行β>0.7503/41/21/4
步行β=0.7503/41/21/4
对角小跑β=0.501/21/20
溜步β=0.5001/21/2
跳跃β=0.501/201/2
疾驰β<0.50≈1/2≈0≈1/2

图4

3次多项式曲线轨迹示意图"

图5

四足机器人运动控制框架图"

[1] Hirose S, Kato K. Study on quadruped walking robot in Tokyo Institute of Technology-past, present and future[C]∥IEEE International Conference on Robotics & Automation,San Fracisco,USA, 2000:414-419.
[2] Tee T W, Low K H, Ng H Y, et al. Mechatronics design and gait implementation of a quadruped legged robot[C]∥IEEE International Conference on Control, Hangzhou, China, 2003: 826-832.
[3] Huang Y, Meijer O G, Lin J, et al. The effects of stride length and stride frequency on trunk coordination in human walking[J]. Gait & Posture, 2010, 31(4): 444-449.
[4] Mcghee R B, Frank A A. On the stability properties of quadruped creeping gaits[J]. Mathematical Bioences, 1968, 3(1): 331-351.
[5] Messuri D, Klein C A. Automatic body regulation for maintaining stability of a legged vehicle during rough-terrian locomotion[J]. IEEE Journal of Robotics & Automation, 1985, 1(3): 132-141.
[6] Hirose S, Tsukagoshi H, Yoneda K. Normalized energy stability margin and its contour of walking vehicles on rough terrain[C]∥The IEEE International Conference on Robotics & Automation,Seoul, South Korea, 2001: 181-186.
[7] Pack D J, Kang H. An omnidirectional gait control using a graph search method for a quadruped walking robot[C]∥The IEEE International Conference on Robotics & Automation, Nogoya, Japan,1995: 988-993.
[8] 王新杰, 李培根, 陈学东, 等. 四足步行机器人关节位姿和稳定性研究[J]. 中国机械工程, 2005, 16(17): 1561-1566.
Wang Xin-jie, Li Pei-gen, Chen Xue-dong, et al. Research on joint posture and stability of quadruped walking robot[J]. China Mechanical Engineering, 2005, 16(17): 1561-1566.
[9] 伍科布拉托维奇. 步行机器人和动力型假肢[M]. 北京: 科学出版社, 1983.
[10] Lin B S, Song S M. Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine[C]∥The IEEE International Conference on Robotics & Automation, Atlanta, USA, 2001: 367-373
[11] Won M, Kang T H, Chung W K. Gait planning for quadruped robot based on dynamic stability: landing accordance ratio[J]. Intelligent Service Robotics, 2009, 2(2): 105-112.
[12] Hoyt D F, Taylor C R. Gait and the energetics of locomotion in horses[J]. Nature, 1981, 292: 239-240.
[13] Alexander R M. The maximum forces exerted by animals[J]. Journal of Experimental Biology, 1985, 115: 231-238.
[14] Pratt G A, Williamson M M. Series elastic actuators[C]∥IEEE International Conference on Intelligent Robots & Systems, Pittsburgh, USA, 1995: 399-406.
[15] Au S K, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy[J]. IEEE Transactions on Robotics, 2009, 25(1): 51-66.
[16] Wolf S, Hirzinger G. A new variable stiffness design: matching requirements of the next robot generation[C]∥IEEE International Conference on Robotics and Automation, Zhangjiajie, China, 2008: 1741-1746.
[17] Paul R P. Robot Manipulators: Mathematics, Programming and Control[M]. Cambridge: The MIT Press, 1981.
[18] Mcghee R B, Iswandhi G I. Adaptive locomotion of a multilegged robot over rough terrain[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(4): 176-182.
[19] Fukuoka Y, Kimura H, Hada Y, et al. Adaptive dynamic walking of a quadruped robot on irregular terrain by using neural system model[C]∥IEEE/RSJ International Conference on Intelligent Robots & Systems, Takamatsu, Japan, 2000: 979-984.
[20] Buehler M, Playter R, Raibert M. Robots step outside[C]∥International Symposium on Adaptive Motion of Animals and Machines (AMAM),Ilmenau, Germany, 2005: 1-4.
[21] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[C]∥World Congress,Seoul, South Korea, 2008: 10822-10825.
[22] Albiez J, Kerscher T, Grimminger F, et al. PANTER-prototype for a fast-running quadruped robot with pneumatic muscles[C]∥Proccedings of the 6th International Conference on Climbing and Walking Robots (CLAWAR), Moscow, Russia, 2003: 107411282.
[23] Masuda K, Shimizu M, Narioka K, et al. 1P1-O15 realization of the dynamic locomotion with a quadruped robot based on the musculoskeletal system driven by pneumatic artificial muscles(biorobotics)[J]. The Proceedings of JSME annual Conference on Robotics and Mechatronics, 2011, 4: 1-4.
[24] Pratt J E. Virtual Model Control of a Biped Walking Robot[M]. Cambridge: Massachusetts Institute of Technology, 1995.
[1] 张涛,林黄达,余中军. 混合动力车辆换挡的实时滚动优化控制方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1215-1224.
[2] 宫洵,任航,张华霖,汪介瑜,胡云峰,孙耀. 冬季网联纯电动汽车热泵空调生态制热控制方法[J]. 吉林大学学报(工学版), 2025, 55(3): 820-828.
[3] 李寿涛,杨路,屈如意,孙鹏鹏,于丁力. 基于模型预测控制的滑移率控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2687-2696.
[4] 孙帅帅,冯春晓,张良. 基于离散采样的多模态四足机器人路径规划[J]. 吉林大学学报(工学版), 2024, 54(4): 1120-1128.
[5] 赵靖华,张雨彤,曹派,王忠恕,李小平,孙亚南,解方喜. 压缩天然气发动机增程式电动汽车能量管理优化[J]. 吉林大学学报(工学版), 2024, 54(3): 600-609.
[6] 李文航,倪涛,赵丁选,邓英杰,师小波. 基于模型预测反馈技术的救援车辆液压悬挂系统控制方法[J]. 吉林大学学报(工学版), 2024, 54(3): 610-619.
[7] 江和耀,王永海,吴幼冬,王萍. 四轮毂驱动电动车辆横向稳定与侧倾预防协同控制策略[J]. 吉林大学学报(工学版), 2024, 54(2): 540-549.
[8] 刘果,熊坚,杨秀建,何扬帆. 基于曲率增广的智能车辆轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(12): 3717-3728.
[9] 刘刚,范群,杨旭,任宏斌. 无人驾驶汽车变速换道轨迹跟踪动态控制[J]. 吉林大学学报(工学版), 2024, 54(12): 3729-3739.
[10] 宋秀兰,柴伟豪,何德峰,应颂翔. DoS攻击下网联车队安全协同自适应预测巡航控制[J]. 吉林大学学报(工学版), 2024, 54(11): 3406-3416.
[11] 蒋渊德,欧阳铭,赵祥模,秦孔建,郑兵兵. 车辆纵侧向辅助驾驶集成优化控制策略[J]. 吉林大学学报(工学版), 2024, 54(10): 2741-2753.
[12] 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734.
[13] 申富媛,李炜,蒋栋年. 四旋翼无人机寿命预测和自主维护方法[J]. 吉林大学学报(工学版), 2023, 53(3): 841-852.
[14] 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725.
[15] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张琳, 章新杰, 郭孔辉, 王超, 刘洋, 刘涛. 未知环境下智能汽车轨迹规划滚动窗口优化[J]. 吉林大学学报(工学版), 2018, 48(3): 652 -660 .
[2] 袁野. 温度和车辆作用下梁式桥梁结构固有频率分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1702 -1710 .
[3] 王清永,曲伟强. 基于线性规划的城市轨道交通运行调度优化算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3446 -3451 .
[4] 何春雷,李东洋,任成祖. 游离磨料加工影响因素及材料去除模型研究进展[J]. 吉林大学学报(工学版), 2025, 55(4): 1123 -1141 .
[5] 刘强,高大湧,刘献礼,贾儒鸿,周强,白峥言. 减振镗杆振动控制研究进展[J]. 吉林大学学报(工学版), 2023, 53(8): 2165 -2184 .
[6] 刘志峰,陈继民,李迎,赵永胜,闫兴,孙富权. 数控机床线轨装配精度建模及控制方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1536 -1543 .
[7] 马常友, 高海波, 丁亮, 于海涛, 邢宏军, 邓宗全. 机器人末端执行器自更换机构设计及对接策略[J]. 吉林大学学报(工学版), 2019, 49(6): 2027 -2037 .
[8] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643 -652 .
[9] 靳立强, 田端洋, 田浩, 刘蒙蒙. 汽车电子稳定系统制动增力辅助技术[J]. 吉林大学学报(工学版), 2019, 49(6): 1764 -1776 .
[10] 于向军,槐元辉,姚宗伟,孙中朝,俞安. 工程车辆无人驾驶关键技术[J]. 吉林大学学报(工学版), 2021, 51(4): 1153 -1168 .