吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1120-1128.doi: 10.13229/j.cnki.jdxbgxb.20240155

• 通信与控制工程 • 上一篇    

基于离散采样的多模态四足机器人路径规划

孙帅帅1(),冯春晓1,张良2   

  1. 1.中国科学技术大学 工程科学学院,合肥 230026
    2.安徽大学 电气工程与自动化学院,合肥 230601
  • 收稿日期:2024-02-07 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:孙帅帅(1989-),男,教授,博士. 研究方向:智能自适应机器人和振动控制.E-mail: sssun@ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(52105081);国家自然科学基金优秀青年科学基金项目(海外)(GG2090007004);中国科学技术大学启动基金项目(KY2090000067)

Path planning for multimodal quadruped robots based on discrete sampling

Shuai-shuai SUN1(),Chun-xiao FENG1,Liang ZHANG2   

  1. 1.College of Engineering Science,University of Science and Technology of China,Hefei 230026,China
    2.College of Electrical Engineering and Automation,Anhui University,Hefei 230601,China
  • Received:2024-02-07 Online:2024-04-01 Published:2024-05-17

摘要:

针对双向快速扩展随机树(RRT-Connect)在多模态四足机器人路径规划中存在不必要的跳跃和行走部分路径的地形起伏程度大及转向角度变化大的问题,提出了一种基于离散采样的解决方案。预处理路径去除不必要的跳跃,离散采样并动态规划获得粗解,使用B样条曲线拟合并二次规划得到最终路径。仿真结果表明,本文方法规划出的路径使得机器人对质心高度的调节平均减少了31.4%,途径地形的起伏程度减小13.4%,地形倾斜角度变化降低11.4%,转向角度变化减小62.7%,验证了本文方法的有效性。

关键词: 人工智能, 四足机器人, 多模态, 路径规划, 离散采样, 二次规划

Abstract:

Aiming at the challenges of unnecessary leap and significant undulations terrains with large steering angles in path planning of multimodal quadruped robots by Rapidly Exploring Random Tree algorithm, a path planning algorithm solution based on discrete sampling is proposed. The path is preprocessed to remove unnecessary leap and a solution set is obtained by discrete sampling and dynamic programming method. B-spline curves are used to define spline segments and quadratic programming method is used to optimize the final path. The simulation results show that paths planned by the proposed method exhibit an average reduction of 31.4% in the adjustment of robot's center of mass height, a 13.4% decrease in undulation of terrain, an 11.4% reduction in terrain slope angle and a 62.7% reduction in steering angle, which affirm the effectiveness of the proposed method.

Key words: artificial intelligence, quadruped robot, multimodal, path planning, discrete sampling, quadratic programming

中图分类号: 

  • TP242

图 1

KD-RRT-Connect生成节点"

图2

算法流程图"

图 3

仿真地图环境"

表 1

环境参数"

参数数值/m
地图长度12.4
地图宽度12.4
地图网格分辨率0.2
初始质心相对地面的高度0.3

图 4

不同复杂程度的地形"

图5

不同复杂程度的地形结果"

表 2

结果的平均值"

算法路径长度质心变化地形起伏地形倾斜转向变化
KD-RRT-Connect16.6672.7442.26611.54911.098
改进算法15.7031.8821.96210.2384.141

表 3

结果的方差"

算法路径长度质心变化地形起伏地形倾斜转向变化
KD-RRT-Connect1.5750.3210.3632.02835.520
改进算法0.8960.2310.3412.2682.269

图 6

结果分布图"

图7

结果对比"

1 张秀丽, 王琪, 黄森威, 等. 一种多模型融合的仿猎豹四足机器人复杂运动控制方法[J]. 机器人, 2022, 44(6): 682-693.
Zhang Xiu-li, Wang qi, Huang Sen-wei, et al. A multi-model fusion based complex motion control approach for a cheetah-mimicking quadruped robot[J]. Robot, 2022, 44(6): 682-693.
2 张帅帅, 荣学文, 李贻斌, 等. 崎岖地形环境下四足机器人的静步态规划方法[J]. 吉林大学学报: 工学版, 2016, 46(4): 1287-1296.
Zhang Shuai-shuai, Rong Xue-wen, Li Yi-bin, et al. Static gait planning method for quadruped robots on rough terrains[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4): 1287-1296.
3 周坤, 李川, 李超, 等. 面向未知复杂地形的四足机器人运动规划方法[J]. 机械工程学报, 2020, 56(2): 210-219.
Zhou Kun, Li Chuan, Li Chao, et al. Motion planning method for quadruped robots walking on unknown rough terrain[J]. Journal of Mechanical Engineering, 2020, 56(2): 210-219.
4 Nguyen Q, Powell M J, Katz B, et al. Optimized jump on the MIT cheetah 3 robot[C]∥International Conference on Robotics and Automation(ICRA), Montreal, Canada,2019: 7448-7454.
5 Jenelten F, He J, Farshidian F, et al. DTC: deep tracking control[J]. Science Robotics, 2024, 9(86): No.eadh5401.
6 崔炜, 朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用, 2023, 59(19): 10-20.
Cui Wei, Zhu Fa-zheng. Review of path planning algorithms for robot navigation[J]. Computer Engineering and Applications, 2023, 59(19): 10-20.
7 LaValle S. Rapidly-exploring random trees: a new tool for path planning[J]. Research Report, 1998:No.9811
8 Kavraki L E, Svestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580.
9 Fankhauser P, Hutter M. A universal grid map library: implementation and use case for rough terrain navigation[J]. Robot Operating System(ROS)——the Complete Reference, 2016(1): 99-120.
10 Fankhauser P, Bloesch M, Gehring C, et al. Robot-centric elevation map with uncertainty estimates[M]∥Mobile Service Robotics. London, UK: World Scientific, 2014: 433-440.
11 张慧, 荣学文, 李贻斌, 等. 四足机器人地形识别与路径规划算法[J]. 机器人, 2015, 37(5): 546-556.
Zhang hui, Rong Xue-wen, Li Yi-bin, et al. Terrain recognition and path planning for quadruped robot[J]. Robot, 2015, 37(5): 546-556.
12 Wermelinger M, Fankhauser P, Diethelm R, et al. Navigation planning for legged robots in challenging terrain[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),Daejeon, South Korea, 2016: 1184-1189.
13 Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894.
14 Norby J, Johnson A M. Fast global motion planning for dynamic legged robots[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA,2020: 3829-3836.
15 Kuffner J J, LaValle S M. RRT-connect: an efficient approach to single-query path planning[C]∥IEEE International Conference on Robotics and Automation. FranciscoSan, USA, 2000: 995-1001.
16 Wellhausen L, Hutter M. Rough terrain navigation for legged robots using reachability planning and template learning[C]∥2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 6914-6921.
17 Fernbach P, Tonneau S, Del Prete A, et al. A kinodynamic steering-method for legged multi-contact locomotion[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Vancouver, Canada,2017: 3701-3707.
18 吴振宇, 刘小飞, 王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报: 工学版, 2023, 53(3): 781-791.
Wu Zhen-yu, Liu Xiao-fei, Wang Yi-pu. Trajectory planning of unmanned system based on DKRRT*⁃APF algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 781-791.
19 De Boor C. On calculating with B-splines[J]. Journal of Approximation Theory, 1972, 6(1): 50-62.
20 Steinbeck M, Koschke R. Tinyspline: a small, yet powerful library for interpolating, transforming, and querying nurbs, b-splines, and bézier curves[C]∥IEEE International Conference on Software Analysis, Evolution and Reengineering(SANER),Honolulu, USA, 2021: 572-576.
21 Stellato B, Banjac G, Goulart P, et al. OSQP: an operator splitting solver for quadratic programs[J]. Mathematical Programming Computation, 2020, 12(4): 637-672.
[1] 金志刚,苏仁鋆,赵晓芳. 基于异质图网络的心理评估方法[J]. 吉林大学学报(工学版), 2024, 54(4): 1078-1085.
[2] 高敬鹏,王国轩,高路. 基于异步合作更新的LSTM-MADDPG多智能体协同决策算法[J]. 吉林大学学报(工学版), 2024, 54(3): 797-806.
[3] 刘浏,丁鲲,刘姗姗,刘茗. 基于机器阅读理解的事件检测方法[J]. 吉林大学学报(工学版), 2024, 54(2): 533-539.
[4] 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480.
[5] 李健,熊琦,胡雅婷,刘孔宇. 基于Transformer和隐马尔科夫模型的中文命名实体识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1427-1434.
[6] 吕卫,韩镓泽,褚晶辉,井佩光. 基于多模态自注意力网络的视频记忆度预测[J]. 吉林大学学报(工学版), 2023, 53(4): 1211-1219.
[7] 孙宝凤,刘娇娇,姚天姿,任欣欣. 考虑能量消耗的纯电动物流车柔性时间窗路径规划问题[J]. 吉林大学学报(工学版), 2023, 53(4): 1047-1059.
[8] 吴振宇,刘小飞,王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 781-791.
[9] 孙宝凤,姚天姿,陈雨琦. 考虑时变交通拥堵的纯电动物流车路径规划模型[J]. 吉林大学学报(工学版), 2023, 53(2): 468-479.
[10] 刘春晖,王思长,郑策,陈秀连,郝春蕾. 基于深度学习的室内导航机器人避障规划算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3558-3564.
[11] 杨帆,翟志强,汪圆圆,朱忠祥,杜岳峰,毛恩荣. 基于虚拟现实的拖拉机变速箱装配系统设计[J]. 吉林大学学报(工学版), 2023, 53(10): 3038-3044.
[12] 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880.
[13] 王生生,姜林延,杨永波. 基于最优传输特征选择的医学图像分割迁移学习[J]. 吉林大学学报(工学版), 2022, 52(7): 1626-1638.
[14] 田皓宇,马昕,李贻斌. 基于骨架信息的异常步态识别方法[J]. 吉林大学学报(工学版), 2022, 52(4): 725-737.
[15] 刘勇,徐雷,张楚晗. 面向文本游戏的深度强化学习模型[J]. 吉林大学学报(工学版), 2022, 52(3): 666-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!