吉林大学学报(工学版)

• • 上一篇    下一篇

改进的车辆平顺性模型

孙中辉1,李幼德1,孙中红2,郭彦颖3   

  1. 1.吉林大学 汽车工程学院,长春 130022;2.鲁东大学 现代教育技术教学部,山东 烟台 264025;3.中国第一汽车制造集团 技术中心,长春 130011
  • 收稿日期:2007-02-26 修回日期:2007-04-26 出版日期:2008-05-01 发布日期:2008-05-01
  • 通讯作者: 李幼德

Improvement of vehicle ride comfort model

Sun Zhong-hui1;Li You-de1;Sun Zhong-hong2;Guo Yan-ying3   

  1. 1.College of Automotive Engineering Jilin University, Changchun 130022, China; 2.Teaching Division of Modern Education Technology, Ludong University,Yantai 264025,China; 3.China FAW Group Corporation R&D Center, Changchun 130011, China
  • Received:2007-02-26 Revised:2007-04-26 Online:2008-05-01 Published:2008-05-01

摘要: 首次利用坐标变换的方式建立了车辆平顺性系统数学模型,将模型输入信号转换为前、后桥的加速度信号。与传统的整车平顺性模型比较,由于把工程中常用的加速度信号作为模型的输入,不仅提高了模型的计算精度,而且在工程实际中更加具有使用价值;利用等效变换将复杂的轮胎分离出去,也增加了模型的真实性。利用matlab/simulink建立了整车平顺性仿真模型,考虑到板簧刚度、阻尼的非线性,对模型中的复杂输入参数进行了初步探讨。为了验证仿真模型的有效性,进行了相关的整车试验。对比试验数据和仿真曲线,可以看出平顺性模型的仿真结果与试验结果是非常吻合的。

关键词: 车辆工程, 平顺性模型, 数学模型, 坐标变换, 仿真分析

Abstract: The coordinate transform was used firstly to establish a mathematical model for the vehicle ride comfort system. The input signals of the model were transformed into the acceleration signals of the front axle and the rear driving axle. Compared with the traditional vehicle ride comfort model, the calculation accuracy of the proposed model was improved and appeared more practical in engineering because of using the acceleration signal as input signal. The complicated tyres were separated by the equivalent transform which made the model more available. A vehicle ride comfort simulation model was established by means of software package matlab/simulink, and its complicated input parameters were discussed considering the stiffness of the flat spring and the nonlinearity of the damping. In order to validate the simulation model, the corresponding vehicle tests were performed. The comparison between the test data and the simulation curves showed that their agreement was quite good.

Key words: vehicle engineering, ride comfort model, mathematical model, coordinate transform, simulation analysis

中图分类号: 

  • U461.4
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!