Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2172-2179.doi: 10.13229/j.cnki.jdxbgxb.20231108

Previous Articles    

Laser ultrasonic detection of mechanical parameters of nickel-based alloy under variable temperature environment

Jun-rong LI(),Yong HU,Jia-jian MENG,Zhi-yuan ZHU,Jian-hai ZHANG(),Hong-wei ZHAO   

  1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2023-12-26 Online:2025-07-01 Published:2025-09-12
  • Contact: Jian-hai ZHANG E-mail:jrli22@mails.jlu.edu.cn;jianhaizhang@jlu.edu.cn

Abstract:

In order to solve the problem that it is difficult to measure the key mechanical parameters of GH600 nickel-based alloy in variable temperature environment, an ipsilateral detection method and opposite-side centering detection method based on the energy distribution characteristics of surface wave and longitudinal wave is proposed. By coupling the laser ultrasonic detection system with the high and low temperature devices made in the laboratory, the velocities of the surface wave and longitudinal wave are obtained, and the mechanical parameters of the alloy at -90~1 000 ℃ are theoretically deduced. The experimental results show that the elastic modulus and shear modulus decrease and the Poisson ratio increases with the increase of temperature, and the difference between the measured values and the reference values is small. The experiments validate that the laser ultrasonic system can effectively gauge the performance of components within challenging environments.

Key words: laser ultrasonic, variable temperature, mechanical properties, nickel-base alloy

CLC Number: 

  • TB511

Fig.1

Laser ultrasonic excitation mechanism"

Fig.2

Directionality of ultrasonic signals under different excitation mechanisms"

Fig.3

Schematic diagram of laser ultrasonic velocity detection system"

Fig.4

Laser ultrasonic detection system in variabletemperature environment."

Fig.5

Variation of wave velocity with temperature"

Fig. 6

Waveforms at Low Temperature"

Table 1

Elastic modulus, shear modulus and Poisson'sratio of Gh600 nodes at different temperatures"

温度/℃弹性模量/GPa剪切模量/GPa泊松比
-90208800.304
-60204780.310
-30203770.318
0198750.323
22198740.331
100197740.338
200193720.341
300185690.344
400180670.347
500180670.350
600175650.353
700171630.358
800155570.361
900147530.375
1 000128460.394

Fig.7

Mechanical parameters at different temperatures"

[1] 常可可, 王立平, 薛群基. 极端工况下机械表面界面损伤与防护研究进展[J]. 中国机械工程, 2020, 31(2): 206-220.
Chang Ke-ke, Wang Li-ping, Xue Qun-ji. Research progress on damage and protection of mechanical surface and interface under extreme operating condition[J]. China Mechanical Engineering, 2020,31(2):206-220.
[2] Li J, Lu Y. Effects of displacement amplitude on fretting wear behaviors and mechanism of Inconel 600 alloy[J]. Wear, 2013,304(1-2):223-230.
[3] Zhang P, Li J, Yu H. An experimental study on the fretting wear behavior of Inconel 600 and 690 in pure water[J]. Wear, 2021, 486:No.203995.
[4] Wei C, Wang Z, Chen J. Sulfuration corrosion failure analysis of Inconel 600 alloy heater sleeve in high-temperature flue gas[J]. Engineering Failure Analysis, 2022, 135:No.106111.
[5] Baig A, Jaffery S, Ali Khan M. Statistical analysis of surface roughness, burr formation and tool wear in high speed micro milling of inconel 600 alloy under cryogenic, wet and dry conditions[J]. Micromachines, 2022, 14(1):No.13.
[6] Liu Z, Bao Y W, Wan D T, et al. A novel method to evaluate Young׳s modulus of ceramics at high temperature up to 2 100 °C[J]. Ceramics International, 2015, 41(10): 12835-12840.
[7] Nadal M H, Hubert C, Ravel-Chapuis G. Shear modulus determination versus temperature up to the melting point using a laser-ultrasonic device[J]. Journal of Alloys and Compounds, 2007, 444: 265-267.
[8] Mckee C, Culshaw B, Leach R. Laser ultrasound measurement of diaphragm thicknes,Young's modulus and Poisson's ratio in an MEMS device[J]. IEEE Journal of Selected Topics in Quantum Electronics,2017, 23(2) :37-44.
[9] 张赛飞, 雷龙宇, 杜明科, 等. 基于小冲杆试验的CB2耐热钢拉伸性能研究[J]. 热加工工艺, 2021, 50(24): 28-31.
Zhang Sai-fei, Lei Long-yu, Du Ming-ke, et al. Research on tensile properties of CB2 heat-resistant steel based on small punch test[J]. Hot Working Technology, 2021, 50(24) :28-31.
[10] Mukherjee S, Kundu A, De P, et al. Insitu investigation of tensile deformation behaviour of cold-rolled interstitial-free high-strength steel in scanning electron microscope[J].Materials Science and Engineering:A,2020, 776: No.139209.
[11] 赵宏伟, 董晓龙, 张霖, 等. 块体材料弹性模量的四点弯曲自动测试[J]. 吉林大学学报:工学版, 2016,46(1): 140-145.
Zhao Hong-wei, Dong Xiao-long, Zhang Lin, et al. Determination of the elastic moduli of bulk materials by four-point bending automatic test[J]. Journal of Jilin University(Engineering and Technology Edition),2016,46(1):140-145.
[12] 安宗文, 马军霞, 马强, 等. 风电叶片全尺寸疲劳试验加载方法研究[J]. 阳能学报, 2021, 42(10): 250-257.
An Zong-wen, Ma Jun-xia, Ma Qiang, et al. Study on loading scheme for full-scale fatigue test of wind turbine blades[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 250-257.
[13] Zou Y, Chai Y, Wang D, et al. Measurement of elastic modulus of laser cladding coatings by laser ultrasonic method[J]. Optics & Laser Technology, 2022, 146: No.107567.
[14] Shukla A. Determination of elastic constants of Inconel-625 superalloy, using laser-based ultrasonic[J].Journal of Theoretical & Applied Physics, 2019, 13(1): 49-54.
[15] Lee H, Ando S, Coenen J,et al. Micro- and macro- elastic properties of tungsten fiber-reinforced tungsten composites probed by nano-indentation and laser ultrasonic[J]. Nuclear Materials and Energy, 2018, 19:262-266.
[16] Nadal M H, Hubert C, Oltra R. High temperature shear modulus determination using a laser-ultrasonic surface acoustic-wave device[J]. Journal of Applied Physics,2009,106: No.024906.
[17] Reese S, Smith D, Rupp R,et al. Elevated-temperature elastic properties of alloys 709 and 617 measured by laser ultrasound[J]. Journal of Materials Engineering and Performance,2021,30(2):1513-1520.
[18] 曹建树, 曹振, 赵龙飞, 等. 激光超声管道表面裂纹检测技术[J]. 光电工程, 2016, 43(3) : 1-6.
Cao Jian-shu, Cao Zhen, Zhao Long-fei,et al. Detecting techniques of surface crack of pipeline based on laser ultrasonic[J]. Opto-Electronic Engineering, 2016,43(3):1-6.
[19] 郑德根. 基于激光超声的铝合金搅拌摩擦焊缺陷评价[D].上海: 上海交通大学材料科学与工程学院, 2014.
Zheng De-gen. Fraction stir welding flaw evaluation of aluminum alloy by laser ultrasonic[D]. Shanghai :School of Materials Science and Engineering,Shanghai Jiao Tong University, 2014.
[20] Zhan Y, Liu C S, Zhang F P, et al. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants[J]. Ultrasonics, 2016, 69: 243-247.
[21] 董慧娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉大工学报: 工学版, 2018, 48(4): 1191-1198.
Dong Hui-juan, Yu Zhen, Fan Ji-zhuang. Identification of non-axisymmetric ultrasonic standing wave field using laser Doppler vibrometer[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(4): 1191-1198.
[22] Zhang S Z, Li X B, Chen C, et al. Characterization of aging treated 6061 aluminum alloy using nonlinear rayleigh wave[J]. Journal of Nondestructive Evaluation, 2019, 38: No.88.
[23] 中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国标准出版社, 2012.
[1] Jin-lan AN,Lan-bin WANG,Song ZHOU,Yan-qing HUANG. Microstructure of titanium alloy heat affected zone repaired by laser deposition and properties of subsequent heat treatment [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1931-1939.
[2] Jian-huang YAN,Zhi-yong WANG,En-hong TANG,Xue HAN,Hai-feng LI,Zi-qin JIANG. Mechanical properties of austenitic stainless steels under monotonic and cyclic loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 912-924.
[3] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[4] Jia-cheng FENG,Wen-biao GONG,Chuan JU,Yu-peng LI,Yu-meng SUN,Rui ZHU. Thermal cycle and microstructures characteristic of bobbin tool friction stir welded 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3184-3191.
[5] Fen YE,Shi-yuan HU. Mechanical properties of ultra⁃thin overlay considering load transfer capacity of old cement pavement joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2636-2643.
[6] Hai-bin WEI,Xiang-yan WANG,Fu-yu WANG,Yong ZHANG. Mechanical properties and micro analysis of AC-25 asphalt mixture based on vibration forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1269-1276.
[7] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[8] Han-bing LIU,Xin GAO,Ya-feng GONG,Shi-qi LIU,Wen-jun LI. Influence of surface treatment on basalt fiber reactive powder concrete mechanical properties and fracture characteristics [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 936-945.
[9] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[10] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[11] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[12] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[13] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[14] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[15] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!