Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2464-2474.doi: 10.13229/j.cnki.jdxbgxb.20231086

Previous Articles    

Non-dominated sorted particle swarm genetic algorithm to solve vehicle location routing problems

Qiong-xin LIU1,2(),Tian-tian WANG2,Ya-nan WANG2   

  1. 1.Beijing Engineering Applications Research Center on High Volume Language Information Processing and Cloud Computing,Beijing Institute of Technology,Beijing 100081,China
    2.School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China
  • Received:2023-12-26 Online:2025-07-01 Published:2025-09-12

Abstract:

A non-dominated sorted particle swarm genetic algorithm with hybrid global-local search is proposed, by which the vehicle location routing problem can be effectively solved. Both particle swarm optimization and genetic algorithm operators are utilized in the global search to improve convergence speed. The non-dominated sorting genetic algorithm III is employed so that population diversity is maintained. The local search strategy is applied separately to superior and inferior individuals, by which the probability of obtaining better solutions is increased. Additionally, the user orders of the last 1/12 individuals in the population are shuffled so that the overall population quality is enhanced. The proposed algorithm is compared with benchmark algorithms by using the open standard dataset, and it is demonstrated that population quality and diversity are better provided, and an effective solution to the vehicle location routing problem can be supplied.

Key words: computer application, vehicle location routing problem, non-dominated sorting genetic algorithm III, particle swarm optimization algorithm, genetic algorithm

CLC Number: 

  • TP391

Fig.1

Solution vector schematic"

Fig.2

LRP solution"

Fig.3

Operation of crossing and compiling"

Table 1

Comparison of experimental results in KBSN examples"

算法实例车辆数量距离成本路线代价SM1SM2DM
HSNS-PSOGABar_8_2_X_NSrivastava86_8x23406.70928.545 97.9428.054122.190
Bar_12_2_X_NPerl83_12x22102.08141.5030.3370.42136.589
Bar_21_5_X_NGaskell67_21x53354.279144.4291.5131.930187.626
Bar_27_5_X_NMin92_27x51.62 587.950215.3467.5208.449983.118
Bar_32_5_X_NGaskell67_32x5_13598.918326.5541.6882.191326.516
Bar_36_5_X_NGaskell67_36x53646.198408.3391.5902.159132.189
Bar_50_5_X_NCh69_50x54891.776680.5382.0472.583201.946
Bar_55_15_X_NPerl83_55x157.667814.9431 008.5902.6283.588136.783
Bar_88_8_X_NDaskin95_88x83981.6192 211.7902.8393.666202.410
Bar_100_10_X_NCh69_100x105.82 720.4002 838.2803.9625.031230.094
NSGA-IIBar_8_2_X_NSrivastava86_8x23549.31531.4939.0448.071603.429
Bar_12_2_X_NPerl83_12x22168.88639.9313.6533.690208.700
Bar_21_5_X_NGaskell67_21x53.083504.445151.6431.8602.016178.333
Bar_27_5_X_NMin92_27x51.0024 769.868199.7829.1509.361385.335
Bar_32_5_X_NGaskell67_32x5_13.087964.129327.3942.3692.505101.066
Bar_36_5_X_NGaskell67_36x53.062890.955388.7321.6572.034103.409
Bar_50_5_X_NCh69_50x53.7231 424.860691.9346.3857.17776.333
Bar_55_15_X_NPerl83_55x158.4451 093.0831 095.7003.5123.99969.795
Bar_88_8_X_NDaskin95_88x83.4421 473.3012 210.2514.8255.29284.102
Bar_100_10_X_NCh69_100x105.7303 161.1422 876.1333.5994.723113.101
NSGA-II+PSOBar_8_2_X_NSrivastava86_8x23520.67731.12814.84014.818690.584
Bar_12_2_X_NPerl83_12x22153.56644.3221.0671.082254.661
Bar_21_5_X_NGaskell67_21x53.968435.416157.69877.50678.316340.150
Bar_27_5_X_NMin92_27x51.0024 551.351204.4918.0368.103260.896
Bar_32_5_X_NGaskell67_32x5_13784.149327.7032.8352.98278.992
Bar_36_5_X_NGaskell67_36x53.008831.141392.5851.2851.497153.438
Bar_50_5_X_NCh69_50x53.9631 421.524688.7834.3264.976412.546
Bar_55_15_X_NPerl83_55x158.0671 058.4331 078.5351.9792.62146.320
Bar_88_8_X_NDaskin95_88x831 318.6192 189.0868.7938.86653.580
Bar_100_10_X_NCh69_100x106.0153 092.1612 868.3686.6037.11891.082
NSGA-IIIBar_8_2_X_NSrivastava86_8x23523.65730.67310.85310.664467.230
Bar_12_2_X_NPerl83_12x22144.11340.0701.3271.40216.435 9
Bar_21_5_X_NGaskell67_21x53.1481.374158.1281.3041.767155.288
Bar_27_5_X_NMin92_27x51.85 133.620214.7114.5885.5141 426.190
Bar_32_5_X_NGaskell67_32x5_13.2912.400327.7392.4201.937111.288
Bar_36_5_X_NGaskell67_36x53.3862.456396.1621.4371.926143.357
Bar_50_5_X_NCh69_50x53.91 342.910689.4541.9832.556196.267
Bar_55_15_X_NPerl83_55x158.2351 074.4101 034.8802.3483.099105.374
Bar_88_8_X_NDaskin95_88x83.61 482.2302 235.7402.9563.864142.481
Bar_100_10_X_NCh69_100x105.8072 978.0002 914.2706.6146.77693.457
NSGA-III+PSOBar_8_2_X_NSrivastava86_8x23517.54430.55219.96620.031328.193
Bar_12_2_X_NPerl83_12x2296.85242.4720.6650.71011.827
Bar_21_5_X_NGaskell67_21x53.03423.300152.9141.4791.933106.731
Bar_27_5_X_NMin92_27x513 026.060207.4878.2267.794881.259
Bar_32_5_X_NGaskell67_32x5_13.5790.263308.1854.7424.293144.994
Bar_36_5_X_NGaskell67_36x53555.626387.8221.6672.196126.4
Bar_50_5_X_NCh69_50x53.91 221.680689.9701.9522.531171.18
Bar_55_15_X_NPerl83_55x158.7621 034.7691 076.8322.7633.65276.873
Bar_88_8_X_NDaskin95_88x83.51 577.8672 001.6724.7324.74565.432
Bar_100_10_X_NCh69_100x107.0033 040.7102 831.7902.1253.277100.654

Table 2

Experimental results of ablation experiments"

算法实例车辆数量距离成本路线代价SM1SM2DM收敛迭代轮数

HSNS-

PSOGA

Bar_8_2_X_NSrivastava86_8x23406.70928.54597.9428.054122.19440.2
Bar_12_2_X_NPerl83_12x22102.08141.5030.3370.42136.589685.3
Bar_21_5_X_NGaskell67_21x53354.279144.4291.5131.930187.626622.7
Bar_27_5_X_NMin92_27x51.62587.95215.3467.5208.449983.118403.7
Bar_32_5_X_NGaskell67_32x5_13598.918326.5541.6882.191326.516820.4
Bar_36_5_X_NGaskell67_36x53646.198408.3391.5902.159132.189780.3
Bar_50_5_X_NCh69_50x54891.776680.5382.0472.583201.946810.4
Bar_55_15_X_NPerl83_55x157.667814.9431 008.592.6283.588136.783648.2
Bar_88_8_X_NDaskin95_88x83981.6192 211.792.8393.666202.41961.4
Bar_100_10_X_NCh69_100x105.82 720.402 838.283.9625.031230.094723.6

本文算法-

PSO

Bar_8_2_X_NSrivastava86_8x23424.67328.6993.8824.11128.052693.6
Bar_12_2_X_NPerl83_12x22134.43440.0721.2121.404131.233782.4
Bar_21_5_X_NGaskell67_21x53.3444.420152.2871.9052.552137.681805.8
Bar_27_5_X_NMin92_27x51.14 767.980238.8016.19526.466529.600598.3
Bar_32_5_X_NGaskell67_32x5_13.1856.442318.9873.8944.497189.0161065.36
Bar_36_5_X_NGaskell67_36x53785.541417.3563.0904.076319.632875.4
Bar_50_5_X_NCh69_50x54.21 249.310690.0103.5054.725196.947991.3
Bar_55_15_X_NPerl83_55x157.5865.4331 071.0024.0555.332130.369805.3
Bar_88_8_X_NDaskin95_88x82.81 273.0202 170.1205.6167.062165.3681 075.2
Bar_100_10_X_NCh69_100x105.82 814.2302 840.5606.5487.957205.378883.5

本文算法-

GA

Bar_8_2_X_NSrivastava86_8x23415.40428.1072.1322.628112.328470.7
Bar_12_2_X_NPerl83_12x22113.15640.0940.5390.72845.548709.4
Bar_21_5_X_NGaskell67_21x53.5458.437150.5331.7852.358162.030620.6
Bar_27_5_X_NMin92_27x52.22 767.620220.46812.16512.9791 037.520503.4
Bar_32_5_X_NGaskell67_32x5_13.4646.538334.7732.4713.096312.291728.4
Bar_36_5_X_NGaskell67_36x53.1682.457417.3782.3982.528138.824794.2
Bar_50_5_X_NCh69_50x541 174.530697.6994.6255.69936.472860.4
Bar_55_15_X_NPerl83_55x158.11 193.8401 060.5103.2504.24094.164 2890.2
Bar_88_8_X_NDaskin95_88x83.5415.40428.1072.1322.628112.328982.6
Bar_100_10_X_NCh69_100x107.2113.15640.0940.5390.72845.548750.3
本文算法-聚合函数选择优质个体局部搜索Bar_8_2_X_NSrivastava86_8x23418.35729.3571.9352.178150.371450.2
Bar_12_2_X_NPerl83_12x22102.68043.6720.8771.17231.357688.4
Bar_21_5_X_NGaskell67_21x53.4339.256157.2782.2632.836195.378601.3
Bar_27_5_X_NMin92_27x533 209.465238.46833.82634.372610.291490.3
Bar_32_5_X_NGaskell67_32x5_13.1600.764310.2359.72511.367180.267710.6
Bar_36_5_X_NGaskell67_36x53576.367385.2832.1682.856169.356785.3
Bar_50_5_X_NCh69_50x54.31 017.267705.3842.5183.278210.372830.6
Bar_55_15_X_NPerl83_55x157791.6891 096.2573.3824.368120.783857.3
Bar_88_8_X_NDaskin95_88x83.21 093.8352 218.3923.6284.473158.367952.6
Bar_100_10_X_NCh69_100x106.62 890.4572 867.4636.7207.798228.493737.9
本文算法-次优个体局部搜索Bar_8_2_X_NSrivastava86_8x23.3411.26731.7252.7183.029197.346452.7
Bar_12_2_X_NPerl83_12x2293.25043.7100.5620.77435.782679.5
Bar_21_5_X_NGaskell67_21x53402.679143.5912.1622.676185.618590.6
Bar_27_5_X_NMin92_27x52.33 434.716315.62525.86213.095929.623458.2
Bar_32_5_X_NGaskell67_32x5_13667.418320.6342.3713.205219.512699.3
Bar_36_5_X_NGaskell67_36x53.2671.783401.7292.3202.848147.641778.3
Bar_50_5_X_NCh69_50x541 315.367680.5232.6933.396174.719849.5
Bar_55_15_X_NPerl83_55x157970.3921 010.6702.6314.73679.230862.9
Bar_88_8_X_NDaskin95_88x84.31 525.3812 220.4202.4653.482200.183928.4
Bar_100_10_X_NCh69_100x107.42 956.4912 926.3806.1177.729203.714730.5
本文算法-对种群中后1/12个体进行局部搜索Bar_8_2_X_NSrivastava86_8x23406.70928.545 97.9838.182122.190442.8
Bar_12_2_X_NPerl83_12x2296.41342.174 81.2581.390293.196673.6
Bar_21_5_X_NGaskell67_21x53378.831146.4451.8052.322262.696524.8
Bar_27_5_X_NMin92_27x523 113.850219.38110.11610.844635.685444.9
Bar_32_5_X_NGaskell67_32x5_13741.388310.12210.32011.116145.673844.4
Bar_36_5_X_NGaskell67_36x53653.843390.4722.1422.705201.434695.5
Bar_50_5_X_NCh69_50x53.5965.022702.6484.9995.924357.133862.6
Bar_55_15_X_NPerl83_55x157.667934.004993.7114.6565.882111.279643.7
Bar_88_8_X_NDaskin95_88x831 293.3602 208.9006.2307.875209.230986.1
Bar_100_10_X_NCh69_100x105.252 744.0402 776.4808.97410.039325.476877.2

Table 3

Experimental results of different proportional parameters"

打乱比例实例车辆数量距离成本路线代价SM1SM2DM

HSNS-

PSOGA

(1/12)

Bar_8_2_X_NSrivastava86_8x23406.70928.54597.9428.054122.190
Bar_12_2_X_NPerl83_12x22102.08141.5030.3370.42136.589
Bar_21_5_X_NGaskell67_21x53354.279144.4291.3031.930187.626
Bar_27_5_X_NMin92_27x51.62 587.950215.34612.1137.1491 321.410
Bar_32_5_X_NGaskell67_32x5_13598.918326.5541.6882.077326.516
Bar_36_5_X_NGaskell67_36x53646.198385.7451.5902.159132.189
Bar_50_5_X_NCh69_50x54852.713680.5382.0472.583201.946
Bar_55_15_X_NPerl83_55x157.667814.9431 008.5903.8633.588136.783
Bar_88_8_X_NDaskin95_88x83981.6192 211.7902.8393.666212.046
Bar_100_10_X_NCh69_100x105.82 720.402 838.2803.9625.031235.119
对后1/6个体进行用户顺序打乱Bar_8_2_X_NSrivastava86_8x23410.57730.6741.7132.071126.398
Bar_12_2_X_NPerl83_12x22105.76144.1270.5660.77118.861
Bar_21_5_X_NGaskell67_21x53349.005152.0292.8023.436221.036
Bar_27_5_X_NMin92_27x52.12 710.487162.78311.7258.763207.452
Bar_32_5_X_NGaskell67_32x5_13.7576.728316.9271.6282.925154.925
Bar_36_5_X_NGaskell67_36x53.1701.673390.7561.7832.578139.634
Bar_50_5_X_NCh69_50x54847.735698.2472.8522.477251.706
Bar_55_15_X_NPerl83_55x157.8881.7431 109.4683.9473.833129.672
Bar_88_8_X_NDaskin95_88x83.51 007.3652 389.7541.7452.478201.467
Bar_100_10_X_NCh69_100x107.13 002.3843 005.4784.8255.732169.567
对后1/24个体进行用户顺序打乱Bar_8_2_X_NSrivastava86_8x23445.36125.062 41.8502.43882.934
Bar_12_2_X_NPerl83_12x22103.15041.0940.6190.82730.531
Bar_21_5_X_NGaskell67_21x53375.711154.2322.0321.738117.057
Bar_27_5_X_NMin92_27x51.83 303.970207.18012.7556.8011 262.670
Bar_32_5_X_NGaskell67_32x5_13546.247316.3841.7712.237166.391
Bar_36_5_X_NGaskell67_36x53.6659.582420.7451.7262.064189.634
Bar_50_5_X_NCh69_50x54901.182691.0122.6023.249190.523
Bar_55_15_X_NPerl83_55x157.3900.4261 101.3103.8014.673120.781
Bar_88_8_X_NDaskin95_88x841 144.6402 207.7104.1525.149411.740
Bar_100_10_X_NCh69_100x107.53 010.9902 847.8306.6598.208232.554
[1] Toth P, Vigo D. The vehicle routing problem: Society for industrial and applied mathematics[J]. Siam Monographs on Discrete Mathematics and Applications, 2001,8(3): 135-176.
[2] Laporte G, Nobert Y, Arpin D. An exact algorithm for solving a capacitated location-routing problem [J]. Annals of Operations Research, 1986, 6(9): 291-310.
[3] Barreto S, Ferreira C, Paixao J, et al. Using clustering analysis in a capacitated location-routing problem[J]. European Journal of Operational Research, 2007, 179(3): 968-977.
[4] Salhi S, Rand G K. The effect of ignoring routes when locating depots[J]. European Journal of Operational Research, 1989, 39(2): 150-156.
[5] Perl J, Daskin M S. A warehouse location-routing problem[J]. Transportation Research Part B: Methodological, 1985, 19(5): 381-396.
[6] Huang S H, Huang Y H, Blazquez C A, et al. Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm[J]. Advanced Engineering Informatics, 2022, 51: No.101536.
[7] Ma B, Hu D, Wu X. The location routing problem of the car-sharing system with autonomous electric vehicles[J]. KSCE Journal of Civil Engineering, 2021, 25(8): 3107-3120.
[8] 胡圣邦, 袁小芳, 郭琳. 改进蚁群算法的民爆物品运输路线优化[J]. 公路交通科技, 2023, 40(3): 247-253.
Hu Sheng-bang, Yuan Xiao-fang, Guo Lin. Improvement of ant colony algorithm for the optimization of transportation routes of civil explosives[J]. Highway Transportation Science and Technology, 2023, 40(3): 247-253.
[9] 杜玟谛, 张虹. 基于改进蚁群算法的危险化学品运输路径优化[J]. 科技风, 2023(7): 153-156.
Du Wen-di, Zhang Hong. Optimization of hazardous chemical transportation route based on improved ant colony algorithm[J]. Science and Technology Wind, 2023(7): 153-156.
[10] Deb K, Mohan M, Mishra S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of pareto optimal solutions[J]. Evolutionary Computation, 2005, 13(4): 501-525.
[11] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSAGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[12] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
[13] Rabbani M, Farrokhi-Asl H, Asgarian B. Solving a bi-objective location routing problem by a NSGA-II combined with clustering approach: Application in waste collection problem[J]. Journal of Industrial Engineering International, 2017, 13(1): 13-27.
[14] 杨红波, 史文库, 陈志勇, 等. 基于NSGA-II的斜齿轮宏观参数多目标优化[J].吉林大学学报:工学版, 2023, 53(4): 1007-1018.
Yang Hong-bo, Shi Wen-ku, Chen Zhi-yong, et al. Multi-objective optimization of macro-parameters of helical gears based on NSGA-II[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[15] Hernandez C, Lara J, Arjona M A, et al. Electromagnetic optimal design of a PMSG considering three objectives and using NSGA-III[J]. IEEE Transactions on Magnetics, 2022, 58(9): 1-4.
[16] Moen H J F, Hansen N B, Hovland H, et al. Many-objective optimization using taxi-cab surface evolutionary algorithm[C]∥The 7th International Conference on Evolutionary Multi-Criterion Optimization, Sheffield, UK, 2013: 128-142.
[17] Asafuddoula M, Ray T, Sarker R. A decomposition-based evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(3): 445-460.
[18] Cheng R, Jin Y, Olhofer M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.
[19] Shi L, Gong J, Zhai C. Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass[J]. Fuel, 2022, 323: No.124344.
[20] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
[21] Poli R, Kennedy J, Blackwell T. Particle swarm optimisation[J]. Journal of Xidian University, 1995, 42(1): 16-22.
[22] Ishibuchi H, Narukawa K. Some issues on the implementation of local search in evolutionary multiobjective optimization[C]∥Genetic and Evolutionary Computation Conference, Berlin, Heidelberg, 2004: 1246-1258.
[23] Yang J, Soh C K. Structural optimization by genetic algorithms with tournament selection[J]. Journal of Computing in Civil Engineering, 1997, 11(3): 195-200.
[24] Sasikumar A, Muthaiah R. Operational amplifier circuit sizing based on NSGA-II and particle swarm optimization[C]∥International Conference on Networks & Advances in Computational Technologies(NetACT), Thiruvanthapuram, India, 2017: 64-68.
[25] Masood A, Mei Y, Chen G, et al. A PSO-based reference point adaption method for genetic programming hyper-heuristic in many-objective job shop scheduling[C]∥Third Australasian Conference on Artificial Life and Computational Intelligence, Sydney,Australia, 2017: 326-338.
[1] Shan-na ZHUANG,Jun-shuai WANG,Jing BAI,Jing-jin DU,Zheng-you WANG. Video-based person re-identification based on three-dimensional convolution and self-attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2409-2417.
[2] Xiang-jiu CHE,Liang LI. Graph similarity measurement algorithm combining global and local fine-grained features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2365-2371.
[3] Wen-hui LI,Chen YANG. Few-shot remote sensing image classification based on contrastive learning text perception [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2393-2401.
[4] Hai-peng CHEN,Shi-bo ZHANG,Ying-da LYU. Multi⁃scale context⁃aware and boundary⁃guided image manipulation detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2114-2121.
[5] Feng-feng ZHOU,Zhe GUO,Yu-si FAN. Feature representation algorithm for imbalanced classification of multi⁃omics cancer data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2089-2096.
[6] Jian WANG,Chen-wei JIA. Trajectory prediction model for intelligent connected vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1963-1972.
[7] Xiang-jiu CHE,Yu-peng SUN. Graph node classification algorithm based on similarity random walk aggregation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2069-2075.
[8] Ping-ping LIU,Wen-li SHANG,Xiao-yu XIE,Xiao-kang YANG. Unbalanced image classification algorithm based on fine⁃grained analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2122-2130.
[9] Yue HOU,Jin-song GUO,Wei LIN,Di ZHANG,Yue WU,Xin ZHANG. Multi-view video speed extraction method that can be segmented across lane demarcation lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1692-1704.
[10] Hong-wei ZHAO,Ming-zhu ZHOU,Ping-ping LIU,Qiu-zhan ZHOU. Medical image segmentation based on confident learning and collaborative training [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1675-1681.
[11] Zi-hao SHEN,Yong-sheng GAO,Hui WANG,Pei-qian LIU,Kun LIU. Deep deterministic policy gradient caching method for privacy protection in Internet of Vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1638-1647.
[12] You-wei WANG,Ao LIU,Li-zhou FENG. New method for text sentiment classification based on knowledge distillation and comment time [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1664-1674.
[13] Hao YUE,Xiao CHANG,Jian-ye LIU,Qiu-shi QU. Customized bus route optimization with vehicle window [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1266-1274.
[14] Yi GUO,Shu-wei WEI,Tao JIANG. Urban passenger transport planning algorithm based on location potential energy and multi source data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1328-1335.
[15] Jun WANG,Chang-fu SI,Kai-peng WANG,Qiang FU. Intrusion detection method based on ensemble learning and feature selection by PSO-GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1396-1405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!