Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 581-588.doi: 10.13229/j.cnki.jdxbgxb20181007

Previous Articles    

Natural frequency and mode of vibration of steel⁃concrete composite beam

Yun-long ZHANG1(),Yang-yang GUO1,Jing WANG1(),Dong LIANG2   

  1. 1.School of Transportation Science & Engineering, Jilin Jianzhu University, Changchun 130118, China
    2.School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China
  • Received:2018-10-08 Online:2020-03-01 Published:2020-03-08
  • Contact: Jing WANG E-mail:zyl_ql@163.com;wangjing0062@sina.com

Abstract:

In order to accurately analyze the frequency and mode shape of steel-concrete composite beam considering the shear-slip effect, the displacement function of the steel-concrete composite beam is proposed according to the basic idea of classical dynamics and the bond slip theory. Based on the energy method, the free vibration equation of composite beam considering shear-slip effect is derived and the natural frequency and its mode shape are obtained, which solves the problem of considering shear-slip at the interface of steel-concrete composite beam. The frequency and mode shape of the testing beam are measured by laboratory test, and the simulation analysis of steel-concrete composite beams is carried out based on ANSYS. The measured value and simulation value are compared with the theoretical solution. The results show that the theoretical solution of the frequency and mode shape of the steel-concrete composite beam is correct and reasonable considering the shear-slip effect. It is very necessary to take the shear-slip effect into consideration in the practical composite beam engineering.

Key words: road transport, bridge engineering, composite beam, free vibration, shear slip effect

CLC Number: 

  • U441

Fig.1

Composite beam cross section"

Fig.2

Displacement state of cross section"

Fig.3

Structure diagram of test beam"

Fig.4

Finite element model of steel-concrete composite beam"

Fig.5

Firsts order mode diagram of steel- concrete composite beam"

Fig.6

Test site"

Table 1

Natural frequency of test beam"

项 目固有频率/Hz误差/%
理论解55.002.00
ANSYS解56.550.76
实测值56.12

Fig.7

First-order mode shape of test beam"

Fig.8

Relationship between shear slip stiffness and first-order frequency"

1 Mackay H M, Gillespie P, Leluau C. Reporton the strength of steel I-beams haunched with concrete[J]. Engineering Journal, 1923, 6(8): 365-369.
2 Viest I M. Investigation of stud shear connectors for composite concrete and steel T-beams[J]. Journal of the American Concrete Insti-tute, 1956, 27(8): 875-891.
3 聂建国, 樊健生. 《钢结构设计规范》(GB50017—2002)钢-混凝土组合梁修订内容介绍[J]. 建筑结构学报, 2003,24(1): 34-39.
Nie Jian-guo, Fan Jian-sheng. Introduction of the revised contents of composite steel-concrete beams in China Design Code of Steel Structure (GB50017—2002)[J]. Journal of Building Structures, 2003,24(1): 34-39.
4 聂建国, 唐亮, 魏茂林. 钢-混凝土组合梁扭转的组合作用分析[J]. 工业建筑, 2008, 38(3): 1-4.
Nie Jian-guo, Tang Liang, Wei Mao-lin.Analysis of composite actions in steel-concrete composite beams subjected to torsion[J]. Industrial Construction, 2008, 38(3): 1-4.
5 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-122.
Nie Jian-guo, Tao Mu-xuan, Wu Li-li, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122.
6 Shahdin A, Morlier J, Gourinat Y. Significance of low energy impact damage on modal parameters of composite beams by design of experiments[J]. Journal of Physics: Conference Series, 2009, 181(1): 1-8.
7 Hios J D, Fassois S D. Stochastic vector identification and uncertain modal parameter estimation for a smart composite beam[J]. Advances in Science & Technology, 2008, 56: 453-458.
8 Khan I A, Parhi D R. Fault detection of composite beam by using the modal parameters and RBFNN technique[J]. Journal of Mechanical Science & Technology, 2015, 29(4): 1637-1648.
9 Singh K V, Li G, Pang S S. Free vibration and physical parameter identification of non-uniform composite beams[J]. Composite Structures, 2006, 74(1): 37-50.
10 Yoo H H, Lee S H, Shin S H. Flapwise bending vibration analysis of rotating multi-layered composite beams[J]. Journal of Sound & Vibration, 2005, 286(4/5): 745-761.
11 Huang C W, Su Y H. Dynamic characteristics of partial composite beams[J]. International Journal of Structural Stability & Dynamics, 2008, 8(4): 665-685.
12 张云龙, 刘占莹, 吴春利, 等. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报: 工学版, 2017, 47(3): 789-795.
Zhang Yun-long, Liu Zhan-ying, Wu Chun-li, et al. Static and dynamic responses of steel-concrete composite beams[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 789-795.
13 侯忠明, 夏禾, 王元清, 等. 钢-混凝土组合梁动力折减系数研究[J]. 振动与冲击, 2015, 34(4): 74-81.
Hou Zhong-ming, Xia He, Wang Yuan-qing, et al. Dynamic reduction coefficients for a steel-concrete composite beam[J]. Journal of Vibration and Shock, 2015, 34(4): 74-81.
14 侯忠明, 夏禾, 张彦玲. 钢-混凝土简支结合梁基本动力特性的解析解[J]. 铁道学报, 2014, 36(3): 100-105.
Hou Zhong-ming, Xia He, Zhang Yan-ling. Analytical solution to dynamic characteristics of simply-supported steel-concrete composite beams[J]. Journal of the China Railway Society, 2014, 36(3): 100-105.
15 侯忠明, 夏禾, 张彦玲. 栓钉连接件抗剪刚度对钢—混凝土结合梁自振特性影响研究[J]. 中国铁道科学, 2012, 33(6): 24-29.
Hou Zhong-ming, Xia He, Zhang Yan-ling. The influence of the shear stiffness of stud connectors on the natural vibration characteristics of steel-connectors on the natural vibration characteristics of steel-concrete composite beam[J]. China Railway Science, 2012, 33(6): 24-29.
16 申志强, 夏军, 吴克刚, 等. 楔形变截面钢-混凝土组合梁弯曲和自由振动的求积元分析[J]. 国防科技大学学报, 2018, 40(1): 42-48.
Shen Zhi-qiang, Xia Jun, Wu Ke-gang, et al. Flexural and free vibrational analysis of tapered partially steel-concrete composite beams using the weak form quadrature element method[J]. Journal of National University of Defense Technology, 2018, 40(1): 42-48.
17 刘寒冰, 马辉, 刘天明, 等. 竖向集中荷载作用下钢-混凝土组合梁的解析解[J]. 中国公路学报, 2010, 23(4): 39-44.
Liu Han-bing, Ma Hui, Liu Tian-ming, et al. Analytical solution of steel-concrete composite beam under vertical loads[J]. China Journal of Highway and Transport, 2010, 23(4): 39-44.
18 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报: 工学版, 2016, 46(2): 432-438.
Guo Xue-dong, Ma Li-jun, Zhang Yun-long. Analytical solution of the double joint layer composite beams with shear-slipe under vertical concentrated load[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 432-438.
19 陈玉骥, 罗旗帜. 钢-混凝土组合梁考虑剪力滞和滑移的一阶自振频率[J]. 烟台大学学报: 自然科学与工程版, 2015, 28(1): 49-53, 69.
Chen Yu-ji, Luo Qi-zhi. First order natural vibration frequency for steel-concrete composite beams considering influence of shear lags and slips[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2015, 28(1): 49-53, 69.
[1] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[2] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
[3] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[4] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
[5] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
[6] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[7] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
[8] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[9] NI Ying-sheng,SUN Qi-xin,MA Ye,XU Dong,LIU Chao. Shear distribution of multi-cell corrugated steel web composite beams based on space grid analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1735-1746.
[10] HUI Ying-xin,MAO Ming-jie,LIU Hai-feng,ZHANG Shang-rong. Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1725-1734.
[11] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[12] GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan. Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier [J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[13] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[14] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[15] WEI Zhi-gang, LIU Han-bing, SHI Cheng-lin, GONG Ya-feng. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement [J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!