吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1231-1244.doi: 10.13229/j.cnki.jdxbgxb.20210767

• 农业工程·仿生工程 • 上一篇    

鲜食玉米仿生摘穗装置设计与试验

朱光强1(),李天宇1,周福君2(),王文明3   

  1. 1.东北农业大学 工程学院, 哈尔滨 150030
    2.北部湾大学 机械与船舶海洋工程学院, 广西 钦州 535011
    3.黑龙江科技大学 机械工程学院, 哈尔滨 150020
  • 收稿日期:2022-02-07 出版日期:2023-04-01 发布日期:2023-04-20
  • 通讯作者: 周福君 E-mail:zhuguangqiang123@126.com;fjzhou@163.com
  • 作者简介:朱光强(1987?),男,博士研究生.研究方向:智能农业机械.E-mail:zhuguangqiang123@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0701905)

Design and experiment of bionic ear picking device for fresh corn

Guang-qiang ZHU1(),Tian-yu LI1,Fu-jun ZHOU2(),Wen-ming WANG3   

  1. 1.College of Engineering,Northeast Agricultural University,Harbin 150030,China
    2.College of Mechanical and Marine Engineering,Beibu Gulf University,Qinzhou 535011,China
    3.School of Mechanical Engineering,Heilongjiang University of Science and Technology,Harbin 150020,China
  • Received:2022-02-07 Online:2023-04-01 Published:2023-04-20
  • Contact: Fu-jun ZHOU E-mail:zhuguangqiang123@126.com;fjzhou@163.com

摘要:

针对现有鲜食玉米摘穗作业收获后果穗籽粒破损、掺杂茎叶等问题,模仿玉米果穗人工掰穗收获姿态,设计了一种鲜食玉米仿生摘穗装置,以降低果穗上籽粒损伤,减少功耗,提高收获质量,并对该摘穗装置进行了结构设计及参数分析。采用二次正交旋转组合试验,以摘穗辊转速、夹持机构倾角、夹持机构间隙、机组前进速度为影响因素,以籽粒破碎率、果穗含杂率、功耗为试验指标,并运用Design-Expert软件对试验数据进行方差和响应曲面分析,得到影响因素和响应曲面之间的数学模型及因素贡献率,并对模型进行试验验证。结果表明,当摘穗辊转速为465 r/min、夹持机构倾角为19°、夹持机构间隙为8 mm、机组前进速度为1.2 m/s时,对应的试验指标籽粒破碎率均值为0.88%、果穗含杂率均值为1.3%、功耗均值为3.1 kW,装置作业稳定性良好。田间试验结果表明,籽粒破碎率均值为0.87%、果穗含杂率均值为1.22%、功耗均值为3.0 kW,降低了果穗含杂率和损伤,减少了功耗,其性能满足鲜食玉米收获作业要求。

关键词: 农业机械化工程, 鲜食玉米仿生摘穗, 装置设计, 优化试验

Abstract:

Aiming at the problems of damage to ears and grains and adulteration of stems and leaves due to the harvesting of the existing fresh corn ear picking operations, imitating the posture of manual harvesting of corn ears, a bionic ear picking device for fresh corn was designed to reduce grain damage on ears, reduce the power consumption, and improve the harvest quality. The structure design and parameter analysis of the ear picking device were carried out. A quadratic orthogonal rotation combination test was used, taking the rotation speed of the picking roller, the angle of inclination clamping mechanism, the gap of the clamping mechanism and the forward speed of the unit as the influencing factors, take grain crushing rate, ear impurity rate, and power consumption as the test indicators. And using Design-Expert software to analyze the variance and response surface of the test data, the mathematical model and factor contribution rate between the influencing factors and the response surface were obtained, and the model is tested and verified. The results show that when the rotation speed of the breaking roller was 465 r/min, the angle of inclination clamping mechanism was 19°, the gap of the clamping mechanism was 8 mm, and the forward speed of the unit was 1.2 m/s, and the corresponding evaluation indexes were as follows: the average grain crushing rate was 0.88%, the average ear impurity rate was 1.3%, the average power consumption was 3.1 kW, and the operation stability of the device is good. Field test results show that the average grain crushing rate was 0.87%, the average ear impurity rate was 1.22%, and the average power consumption is 3.0 kW, which reduces ear impurity and damage, reduces power consumption, and its performance meets the requirements of fresh corn harvesting operations.

Key words: agricultural mechanization engineering, bionic ear picking of fresh corn, device design, optimization test

中图分类号: 

  • S233.4

图1

装置结构图"

图2

仿生弯折摘穗机构"

图3

柔性夹持输送机构"

图4

柔性夹持输送机构运动图"

图5

剪切载荷位移曲线"

图6

夹持机构示意图"

图7

装置试验台结构图"

图8

液压控制回路图"

图9

控制系统框图"

表1

京科糯2010物理参数测定"

参数均值参数均值
株高/mm2435籽粒含水率/%60
最低结穗高度/mm895果穗根部直径/mm43
果穗长度/mm191结穗位茎秆直径/mm35

图10

试验台实物图"

表2

因素编码表"

编码因 素
摘穗辊转速/(r·min-1夹持机构倾角/(o)夹持输送机构间隙/mm机组前进速度/(m·s-1
1.682988.820121.40
1814.51710.741.19
0640.2148.90.98
-1465.9117.060.77
-1.682291.685.80.56

表3

试验方案与结果"

编号因 素目标函数

摘穗辊转速Z1

/(r·min-1

夹持机构倾角Z2/(°)夹持输送机构间隙Z3/mm

机组前进速度

Z4/(m·s-1

籽粒破碎率Y1

/%

果穗含杂率Y2

/%

功耗Y3

/kW

1465.9011.07.060.770.891.684.81
2814.5011.07.060.770.761.574.31
3465.9017.07.060.770.731.434.32
4814.5017.07.060.770.611.223.63
5465.9011.010.740.770.811.554.32
6814.5011.010.740.770.711.434.31
7465.9017.010.740.770.521.013.14
8814.5017.010.740.770.450.862.44
9465.9011.07.061.190.470.932.69
10814.5011.07.061.190.440.892.76
11465.9017.07.061.190.691.353.67
12814.5017.07.061.190.360.651.95
13465.9011.010.741.190.581.293.55
14814.5011.010.741.190.310.471.47
15465.9017.010.741.190.360.682.04
16814.5017.010.741.190.340.591.85
17291.6014.08.900.980.450.892.51
18988.8014.08.900.980.480.932.66
19640.208.08.900.980.631.253.68
20640.2020.08.900.980.611.223.55
21640.2014.05.800.980.691.364.05
22640.2014.012.000.980.671.343.98
23640.2014.08.900.560.881.654.76
24640.2014.08.901.400.511.013.22
25640.2014.08.900.980.851.574.39
26640.2014.08.900.980.831.554.33
27640.2014.08.900.980.921.714.54
28640.2014.08.900.981.011.874.93
29640.2014.08.900.980.791.494.59
30640.2014.08.900.980.811.544.73

表4

籽粒破碎率回归方程方差分析"

项目来源平方和自由度均方FP
模型0.94/0.9114/90.067/0.106.82/11.690.0003***/<0.0001***
Z10.043/0.0431/10.043/0.0434.32/4.890.0553*/0.0388**
Z20.038/0.0381/10.038/0.0383.82/4.330.0696*/0.0506*
Z30.035/0.351/10.035/0.0353.50/3.970.0809*/<0.0601*
Z40.30/0.301/10.30/0.3030.16/34.18<0.0001***/<0.0001***
Z1Z26.25×10-616.25×10-66.347×10-30.9802
Z1Z31.406×10-311.406×10-30.140.7108/
Z1Z43.306×10-313.306×10-30.340.5709
Z2Z30.02010.0202.060.1715
Z2Z40.041/0.0411/10.041/0.0414.16/4.720.0593*/0.0420**
Z3Z41.056×10-311.056×10-30.110.7478
Z120.33/0.331/10.33/0.3333.26/37.69<0.0001***/<0.0001***
Z220.14/0.141/10.14/0.1413.85/15.700.0020***/0.0008***
Z320.085/0.0851/10.085/0.0858.59/9.730.0103**/0.0054***
Z420.074 /0.0741/10.074/0.0747.47/8.460.0154**/0.0087***
残差0.15/0.1715/209.847×10-3/8.689×10-3
失拟项0.11/0.1410/150.011/9.314×10-31.67/1.370.2982/0.3894
纯误差0.034/0.0345/56.817×10-3/6.817×10-3
所有项1.09/1.0929/29

表5

果穗含杂率回归方程方差分析"

项目来源平方和自由度均方FP
模型3.31/3.0214/80.24/0.385.01/7.990.0019***/<0.0001***
Z10.19/0.191/10.19/0.194.12/4.110.0605*/0.0555*
Z20.18/0.181/10.18/0.183.82/3.810.0696*/0.0643*
Z30.15/0.151/10.15/0.153.12/3.110.00976***/<0.0921*
Z41.12/1.121/11.12/1.1223.69/23.640.0002***/<0.0001***
Z1Z22.25×10-412.25×10-44.768×10-30.9459
Z1Z39.0×10-419.0×10-40.0190.8920
Z1Z40.0710.071.490.2414
Z2Z30.08710.0871.840.1946
Z2Z40.1210.122.600.1280
Z3Z44.225×10-314.225×10-30.090.7689
Z121.05/1.051/11.05/1.0522.24/22.200.0003***/0.0001***
Z220.36/0.361/10.36/0.367.60/7.590.0147**/0.0119**
Z320.20/0.201/10.20/0.204.26/4.250.0567*/0.0518*
Z420.23 /0.231/10.23/0.234.77/4.760.0452**/0.0406**
残差0.71/0.9915/210.047/0.047
失拟项0.61/0.8910/160.061/0.0562.99/2.750.1189/0.1340
纯误差0.10/0.105/50.020/0.020
所有项4.02/4.0229/29

表6

作业功耗回归方程方差分析"

项目来源平方和自由度均方FP
模型22.48/21.7714/91.61/2.426.73/11.280.0004***/<0.0001***
Z10.64/0.641/10.64/0.642.67/2.970.1232/0.1002
Z21.32/1.321/11.32/1.325.53/6.160.0327**/0.0221**
Z31.03/1.031/11.03/1.034.31/4.800.0555*/<0.0405**
Z46.79/6.791/16.79/6.7928.47/31.69<0.0001***/<0.0001***
Z1Z20.05910.0590.250.6268
Z1Z31.563×10-411.563×10-46.546×10-40.9799
Z1Z40.01110.0110.0440.8366
Z2Z31.43/1.431/11.43/1.436.01/6.690.0270**/0.0177**
Z2Z40.5910.592.470.1371
Z3Z40.0510.050.210.6553
Z128.65/8.651/18.65/8.6536.24/40.34<0.0001***/<0.0001***
Z222.54/2.541/12.54/2.5410.62/11.830.0053***/0.0026***
Z321.14/1.141/11.14/1.144.78/5.330.0450*/0.0318**
Z421.21 /1.211/11.21/1.215.08/5.660.0395**/0.0275**
残差3.58/4.2915/200.24/0.21
失拟项2.71/3.4210/150.27/0.231.56/1.310.3253/0.4090
纯误差0.87/0.875/50.17/0.17
所有项26.06/26.0629/29

表7

各因素对各项指标的贡献率"

性能指标影响因素贡献率贡献率排序
Z1Z2Z3Z4
Y11.742.301.862.21Z2Z4Z3Z1
Y22.042.141.672.22Z4Z2Z1Z3
Y31.602.441.982.07Z2Z4Z3Z1

图11

田间试验"

1 王中林. 鲜食玉米发展前景及关键栽培技术[J]. 科学种养,2018(12): 20-21.
Wang Zhong-lin. Development prospect and key cultivation techniques of fresh corn[J]. KeXue ZhongYang, 2018(12): 20-21.
2 Cheng Yong-hui, Huang Biao, Chu Ao, et al. Research progress of corn harvest mechanization technology[J]. Mechanical Engineering and Technology, 2021, 10(1): 83-91.
3 Rogovskii I L, Liubarets B S, Voinash S A, et al. Research of diagnostic of combine harvesters at levels of hierarchical structure of systems and units of hydraulic system[J]. Journal of Physics: Conference Series, 2020, 1679(4): No. 042038.
4 王优,张强,于路路. 玉米摘穗装置的应用现状与展望[J]. 农机化研究,2011, 33(1): 228-231.
Wang You, Zhang Qiang, Yu Lu-lu. Application status and prospect of maize maize picking device[J]. Journal of Agricultural Mechanization Research, 2011, 33(1): 228-231.
5 陈美舟,程修沛,贾晓东,等. 仿生手掰穗玉米收获装置结构及运行参数优化[J]. 农业工程学报,2018, 34(5): 15-22.
Chen Mei-zhou, Cheng Xiu-pei, Jia Xiao-dong, et al. Optimization of operating parameter and structure for corn ear picking device by bionic breaking ear hand[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5):15-22.
6 张丽萍, 李其昀. 仿生玉米掰穗装置掰穗速度与功耗试验[J]. 农业工程学报,2015, 31(19):9-14.
Zhang Li-ping, Li Qi-yun. Speed of bionic breaking corn ear hand and experiment on power consumption[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 9-14.
7 王显仁,耿令新,李心平,等. 鲜食玉米低损伤摘穗试验台设计与试验[J]. 农业工程, 2017, 7(1): 68-71.
Wang Xian-ren, Geng Ling-xin, Li Xin-ping, et al. Design and experiment of low-injury picking test table for fresh-esting maize[J]. Agricultural Engineering, 2017, 7(1): 68-71.
8 刘宪军. 新型玉米摘穗装置的研究[D]. 长春:吉林大学生物与农业工程学院,2014.
Liu Xian-jun. Study on a new type of corn ear picking device[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2014.
9 曹彪. 弯曲折断式玉米摘穗机构研究[D]. 长春: 吉林大学生物与农业工程学院, 2012.
Cao Biao. Study on corn snapping mechanism with mode of bending and breaking[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2012.
10 Hanna H M, Kohl K D, Haden D A. Machine losses from conventional versus narrow row corn harvest[J]. Applied Engineering in Agriculture, 2002, 18(4): 405-409.
11 徐文腾,赵静,崔欣,等. 上拉切茎式仿生玉米掰穗装置设计与分析[J]. 农机化研究,2018, 40(7): 81-86.
Xu Wen-teng, Zhao Jing, Cui Xin, et al. The bionics design and analysis on device of corn picking with dragging and cutting stem[J]. Journal of Agricultural Mechanization Research, 2018, 40(7): 81-86.
12 耿端阳, 李玉环,孟凡虎,等.玉米收获机多棱立辊式摘穗装置设计与试验[J]. 农业机械学报,2017, 48(3): 84-91.
Geng Duan-yang, Li Yu-huan, Meng Fan-hu, et al. Design and experiment of corn harvester polygonal vertical-rollers snapping means[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 84-91.
13 陈美舟, 孙雪峰, 程修沛, 等. 卧辊式摘穗机构摘穗辊高度差对玉米籽粒损失的影响[J]. 农业工程学报, 2017, 33(4): 63-68.
Chen Mei-zhou, Sun Xue-feng, Cheng Xiu-pei, et al.Effect of height difference of horizontal corn snapping rollers device on grain loss[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4):63-68.
14 中国农业机械化科学研究院.农业机械设计手册:上册[M]. 北京: 中国农业科学技术出版社, 2007.
15 Igathinathane C, Pordesimo L O, Schilling M W, et al. Fast and simple measurement of cutting energy requirement of plant stalk and prediction model development[J]. Industrial Crops and Products, 2011, 33(2): 518-523.
16 Lisowski A, Swiatek K, Klonowski J, et al. Movement of chopped material in the discharge spout of forage harvester with a flywheel chopping unit:measurements using maize and numerical simulation[J]. Biosystems Engineering, 2012, 111(4): 381-391.
17 张道林,孙永进,赵洪光,等. 立辊式玉米摘穗与茎秆切碎装置的设计[J]. 农业机械学报,2005, 36(7): 50-52, 76.
Zhang Dao-lin, Sun Yong-jin, Zhao Hong-guang,et al.Design of a vertical-roll type of corn picker and stalk chopper[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(7): 50-52, 76.
18 纪晓琦,耿端阳,姚艳春,等.玉米收获机激振摘穗装置设计与试验[J].农业机械学报,2020,51():126-133.
Ji Xiao-qi, Geng Duan-yang, Yao Yan-chun, et al. Design and test of the corn harvester's excitation vibration ear picking device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.2): 126-133.
19 耿端阳,李玉环,何珂,等. 立辊式玉米收获机割台间隙夹持输送装置设计与试验[J].农业机械学报,2017,48(11): 130-136.
Geng Duan-yang, Li Yu-huan, He Ke,et al. Design and experiment on gripping delivery mechanism for vertical-rollers type of corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(11): 130-136.
20 吴鸿欣,陈志,韩增德,等. 玉米植株抗弯特性对分禾器结构的影响分析[J]. 农业机械学报,2011, 42(): 6-9.
Wu Hong-xin, Chen Zhi, Han Zeng-de, et al. Effect analysis of bending properties of corn plants on divider structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Sup.1): 6-9.
21 刘静,刁培松,张道林,等. 玉米收获机分禾器的研究[J]. 农机化研究,2007, 28(11): 145-149.
Liu Jing, Diao Pei-song, Zhang Dao-lin. Research on the nearside divider of corn harvest[J]. Journal of Agricultural Mechanization Research, 2007, 28(11): 145-149.
22 李慧,李丽.采摘机械手末端控制系统的设计——基于PLC和MCGS组态软件[J]. 农机化研究,2020, 42(6): 202-206.
Li Hui, Li Li. Design of picking manipulator terminal control system―based on PLC and MCGS configuration software[J]. Journal of Agricultural Mechanization Research, 2020, 42(6): 202-206.
23 Wang Heng, Cao Shu-kun, Xu Xiang-qian, et al. Design of picking roller for corn harvester picking machine and selection of hydraulic motor[J]. IOP Conference Series: Materials Science and Engineering, 2018, 439(4): No. 042028.
24 刘国梁,李新,伍梁,等. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报: 工学版, 2018, 52(9): 1762-1770.
Liu Guo-liang, Li Xin, Wu Liang,et al. Analysis and design-optimization of LCC resonant converter operating under wide range input and output voltage [J].Journal of Zhejiang University(Engineering Science),2018, 52(9): 1762-1770.
25 肖戟,杨光,牛云鹏,等. 4YL-2型玉米收获机性能指标及测试技术[J]. 长春工业大学学报: 自然科学版, 2009, 30(1): 83-87.
Xiao Ji, Yang Guang, Niu Yun-ping, et al. Performance test techniques for 4YL-2type harvest machine[J]. Journal of Changchun University of Technology(Natural Science Edition), 2009, 30(1): 83-87.
26 赵淑红,谭贺文,王加一,等. 多功能集成式播种开沟器的设计与试验[J].农业工程学报, 2018, 34(11): 58-67.
Zhao Shu-hong, Tan He-wen, Wang Jia-yi, et al. Design and experiment of multifunctional integrated seeding opener[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 58-67.
27 肖宝兰,俞小莉,韩松,等. 翅片参数对车用中冷器流动传热性能的影响[J]. 浙江大学学报:工学版, 2010, 44(11): 2164-2168, 2178.
Xiao Bao-lan, Yu Xiao-li, Han Song, et al. The study of effects of fin parameters on thermal hydraulic performance of a vehicular charged air cooler[J]. Journal of Zhejiang University (Engineering Science), 2010,44(11): 2164-2168, 2178.
28 陈洋,连永祥,李新. 二次回归正交旋转组合设计优化废橡胶辊筒粉碎机效率[J]. 沈阳化工大学学报,2012, 26(3): 251-254.
Chen Yang, Lian Yong-xiang, Li Xin. Rubber roller mill efficiency with the method of quadratic regression orthogonal rotation[J]. Journal of Shenyang University of Chemical Technology, 2012, 26(3): 251-254.
29 徐仲儒.试验回归设计[M].哈尔滨:黑龙江科技出版社,1998.
30 . 玉米收获机械技术条件 [S].
[1] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[2] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[3] 刘佳杰,马兰,向伟,颜波,文庆华,吕江南. 4QM-4.0型麻类青饲料联合收获机研制[J]. 吉林大学学报(工学版), 2022, 52(12): 3039-3048.
[4] 曾百功,黎奎良,叶进,任丽丽,Rashidov Jaloliddin,张明. 工厂化上海青流水线收割装置的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2756-2764.
[5] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[6] 朱光强,李天宇,周福君. 鲜食玉米仿生摘穗柔性夹持输送装置设计与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2486-2500.
[7] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[8] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[9] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
[10] 付君,张屹晨,程超,陈志,唐心龙,任露泉. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
[11] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[12] 程超,付君,郝付平,陈志,周德义,任露泉. 清选筛运动参数对玉米芯轴堵筛规律的影响[J]. 吉林大学学报(工学版), 2020, 50(1): 351-360.
[13] 程超,付君,唐心龙,陈志,任露泉. 振动形式对水稻脱出物界面粘附规律的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1228-1235.
[14] 付君,钱志辉,尹维,王甲甲,任露泉. 小麦摩擦与拉伸性能[J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!