吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2756-2764.doi: 10.13229/j.cnki.jdxbgxb20210385

• 农业工程·仿生工程 • 上一篇    

工厂化上海青流水线收割装置的设计与试验

曾百功1(),黎奎良1,叶进1,任丽丽2(),Rashidov Jaloliddin3,张明1   

  1. 1.西南大学 工程技术学院,重庆 400715
    2.吉林大学 生物与农业工程学院,长春 130022
    3.塔什干农业机械化和灌溉工程师学院 水利工程学院,乌兹别克斯坦 塔什干 845250
  • 收稿日期:2020-08-20 出版日期:2022-11-01 发布日期:2022-11-16
  • 通讯作者: 任丽丽 E-mail:zengbaigong@163.com;liliren@jlu.edu.cn
  • 作者简介:曾百功(1985-),男,副教授,博士.研究方向:农业机械研发,仿生理论与技术.E-mail:zengbaigong@163.com
  • 基金资助:
    国家自然科学基金项目(31601210);重庆市技术创新与应用示范专项产业类重点研发项目(cstc2018jszx-cyzdX0045);中央高校基本科研业务费专项项目(XDJK2019B019)

Design and experiment of harvesting device for industrialized production line of Shanghaiqing

Bai-gong ZENG1(),Kui-liang LI1,Jin YE1,Li-li REN2(),Jaloliddin Rashidov3,Ming ZHANG1   

  1. 1.College of Engineering and Technology,Southwest University,Chongqing 400715,China
    2.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    3.Faculty of Hydrotechnical Constructions,Tashkent Institute of Irrigation and Agricultural Mechanization Engineers,Tashkent 845250,Uzbekistan
  • Received:2020-08-20 Online:2022-11-01 Published:2022-11-16
  • Contact: Li-li REN E-mail:zengbaigong@163.com;liliren@jlu.edu.cn

摘要:

针对工厂化种植的叶菜在收获工序中机械化水平不高、劳动强度大、耗时长、效率低等问题,以具代表性的上海青为研究对象,设计了一款以带锯切割、螺杆张紧和V型皮带传动的上海青流水线生产收割装置。基于上海青根茎切割过程的理论研究和仿真分析,确定了影响切割效果的主要因素,并试制试验样机进行正交试验,获得较优参数组合如下:带锯为光刃带锯,进给速度为0.05 m/s,切割转速为400 r/min。进行了验证试验,结果表明:切割效果好,端面平整,合格率达到88.9%,收割装置达到了高效省力的设计要求。该研究可为叶菜流水线生产中的收割设备研发提供参考。

关键词: 农业机械化工程, 工厂化, 上海青, 带锯切割, 仿真分析

Abstract:

To solve the problems of low mechanization level, high labor intensity, long time consuming and low efficiency in the harvesting process of industrialized planting leafy vegetables, the representative Shanghaiqing was taken as the research object, a harvesting device with band saw cutting, screw tensioning and V-belt transmission, was designed for the production line of Shanghaiqing. Based on the theoretical research and simulation analysis of cutting process of Shanghaiqing roots, the main factors affecting the cutting effect was determined, and the prototype was trial-manufactured and orthogonal tests were carried out, the optimal combination of parameters was obtained: belt saw was no teeth, feed speed was 0.05 m/s and cutting speed was 400 r/min. The verification test results show that cutting effect is well and the end face is smooth, and the qualified rate is 88.9%. Therefore, the harvesting device meets the requirements of high efficiency and labor saving. This study can provide reference for the research and development of harvesting device in the assembly line production of industrialized planting leafy vegetables.

Key words: agricultural mechanization engineering, industrialization, Shanghaiqing, band saw cutting, simulation analysis

中图分类号: 

  • S225.92

图1

切割装置三维图"

图2

切割装置与流水线匹配图"

表1

主要设计参数"

设计参数参数值
尺寸规格(长×宽×高)/(mm×mm×mm)1255×500×1000
总质量/kg≤120
切割转速/(r·min-1300~1000
额定电压/V380
功耗/kW1.1
切割合格率/%≥85.0
切割幅宽/mm450

带锯规格(周长×宽×厚)

/(mm×mm×mm)

2830×16×0.5

图3

切割速度合成示意图"

图4

根茎切割受力示意图"

图5

带锯轮三维图"

图6

张紧力调节装置三维图"

表2

根茎主要物性参数"

参 数参数值
密度/(kg·m-3946
X方向弹性模量/Pa1.5×106
Y方向弹性模量/Pa1.5×106
Z方向弹性模量/Pa4×106
泊松比0.3

图7

根茎切割模型网格划分"

图8

切割后的根茎"

图9

带锯齿型"

图10

仿真应力-转速结果图"

图11

上海青种植间距分布图"

图12

试验准备"

图13

切割转速-损伤率图"

图14

切割后的上海青状态"

表3

正交试验方案和结果"

序号试验因子合格率/%
A/(m?s-1B/(r?min-1空列C
11:0.031:40011:锯齿82.60
212:50022:月牙82.60
313:60033:光刃92.60
42:0.0412394.95
5223177.60
6231282.60
73:0.0513287.60
8321394.95
9332178.90
K1j257.80265.15260.15239.10
K2j255.15255.15244.25252.80
K3j261.45254.10262.80282.50
Rj6.3011.053.7040.40

图15

上海青收获效果图"

1 糜南宏, 赵映, 秦广明, 等. 蔬菜全程机械化研究现状与对策[J]. 中国农机化学报, 2014, 35(3): 66-69.
Mi Nan-hong, Zhao Ying, Qin Guang-ming, et al. Vegetables full-mechanization research present situation and the countermeasures[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(3): 66-69.
2 李佩珊, 马善婷. 中国蔬菜种植面积目前已突破3亿亩[J]. 中国食品, 2019(15): 153.
Li Pei-shan, Ma Shan-ting. China's vegetable planting area having broken through 20 million hectare[J]. China Food, 2019(15): 153.
3 杨其长. 植物工厂现状与发展战略[J]. 农业工程技术, 2016, 36(10): 9-12.
Yang Qi-chang. Present situation and development strategy of plant factory[J]. Agricultural Engineering Technology, 2016, 36(10): 9-12.
4 金月, 肖宏儒, 肖苏伟, 等. 叶类蔬菜收获技术与装备研究现状及发展趋势[J]. 中国农业科技导报, 2018, 20(9): 78-84.
Jin Yue, Xiao Hong-ru, Xiao Su-wei, et al. Research statue and development trendency on leaf vegetable harvesting technology and equipment[J]. Journal of Agricultural Science and Technology, 2018, 20(9): 78-84.
5 王俊, 杜冬冬, 胡金冰, 等. 蔬菜机械化收获技术及其发展[J]. 农业机械学报, 2014, 45(2): 81-87.
Wang Jun, Du Dong-dong, Hu Jin-bing, et al.Vegetable mechanized harvesting technology and it's development[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 81-87.
6 高国华, 王天宝. 温室雾培蔬菜收获机收获机构的研究设计[J]. 农机化研究, 2015, 37(10): 91-97.
Gao Guo-hua, Wang Tian-bao. Design of aeroponics greenhouse vegetable harvester harvesting machanism[J]. Journal of Agricultural Mechanization Research, 2015, 37(10): 91-97.
7 申屠留芳, 张炎, 孙星钊, 等. 叶类蔬菜收获机的设计[J]. 中国农机化学报, 2016, 37(11): 20-23.
Liu-fang Shen-tu, Zhang Yan, Sun Xing-zhao, et al. Design of leaf vegetable harvester[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 20-23.
8 秦广明, 赵映, 肖宏儒, 等. 高速双动小型手扶式叶菜收获机设计与运动分析[J]. 中国农机化学报, 2015, 36(5): 9-12.
Qin Guang-ming, Zhao Ying, Xiao Hong-ru, et al. Design and movement analysis of double-acting cutting device of small walking leafy vegetables harvester[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 9-12.
9 莫浩. 水培生菜自动采收装置的设计与研究[D]. 咸阳: 西北农林科技大学机械与电子工程学院, 2018.
Mo Hao. Design and research of the automatic harvesting machine of hydroponic lettuce[D]. Xianyang: Mechanical and Electronic Engineering, Northwest A&F University, 2018.
10 徐赛超. 植物工厂生菜自动化采收系统的设计及试验[D]. 镇江: 江苏大学农业工程学院, 2017.
Xu Sai-chao. Design and experiment of automatic harvesting system for lettuce in plant factory[D]. Zhenjiang: School of Agricultural Engineering, Jiangsu University, 2017.
11 Brown D, Glancey J L. Theoretical and experimental analysis of a continuous-blade cutting system for leafy vegetables[J]. Transactions of the ASABE, 2007, 50(3): 803-813.
12 Nangvn Y. Development of prototype harvester for head lettuce[J]. Engineering in Agriculture, Environment and Food, 2015, 8(1): 18-25.
13 Shibata Y. Development of a crisp head lettuce harvester[J]. Bulletin of the Chugoku National Agricultural Experiment Station, 1990, 7: 17-36.
14 韦勇, 秦广明, 金月, 等. 叶菜收获机械的研究现状及发展趋势[J]. 农业开发与装备, 2016(8): 98-100.
Wei Yong, Qin Guang-ming, Jin Yue, et al. Research status and development trend of leafy vegetable harvesting machinery[J]. Agricultural Development & Equipments, 2016(8): 98-100.
15 花军. 现代木工机床结构[M]. 哈尔滨: 东北林业大学出版社, 2006.
16 中华人民共和国机械行业标准. . 木工带锯机 锯轮 [S].
17 江平, 丁泽林, 丁侠胜, 等. 带锯床张紧装置结构设计[J]. 轻工机械, 2017, 35(1): 82-85.
Ping Jang, Ding Ze-lin, Ding Xia-sheng, et al. Structural design of tensioning device in band sawing machine[J]. Light Industry Machinery, 2017, 35(1): 82-85.
18 孙桓. 机械原理[M]. 西安: 西北工业大学出版社, 2016.
19 丛茜, 徐金, 马博帅, 等. 基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J]. 吉林大学学报: 工学版, 2021, 51(2): 754-760.
Cong Qian, Xu Jin, Ma Bo-shuai, et al. Design and test of tractor hydraulic suspension system testing device based on virtual simulation[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 754-760.
20 张克平, 黄建龙, 杨敏, 等. 冬小麦籽粒受挤压特性的有限元分析及试验验证[J]. 农业工程学报, 2010(6): 352-356.
Zhang Ke-ping, Huang Jian-long, Yang Min, et al. Finite element analysis and experimental verification of wheat grain under compression loads[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010(6): 352-356.
21 薛钊, 付君, 陈志, 等. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 739-748.
Xue Zhao, Fu Jun, Chen Zhi, et al. Optimization experiment on parameters of chopping device of forage maize harvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
22 马义东, 徐灿, 崔永杰, 等. 水培生菜整株低损收获装置设计与试验[J]. 农业机械学报, 2019, 50(1): 162-169.
Ma Yi-dong, Xu Can, Cui Yong-jie, et al. Design and test of harvester for whole hydroponic lettuce with low damage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 162-169.
[1] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[2] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[3] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[4] 朱光强,李天宇,周福君. 鲜食玉米仿生摘穗柔性夹持输送装置设计与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2486-2500.
[5] 张文会,伊静,刘委,于秋影,王连震. 基于MADYMO的大客车追尾碰撞事故乘员损伤机理[J]. 吉林大学学报(工学版), 2022, 52(1): 118-126.
[6] 李明,薛庆峰,张可欣,吕然,韦长华. 电动汽车热泵空调系统性能分析[J]. 吉林大学学报(工学版), 2021, 51(6): 1943-1952.
[7] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[8] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[9] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
[10] 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396.
[11] 付君,张屹晨,程超,陈志,唐心龙,任露泉. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
[12] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[13] 程超,付君,郝付平,陈志,周德义,任露泉. 清选筛运动参数对玉米芯轴堵筛规律的影响[J]. 吉林大学学报(工学版), 2020, 50(1): 351-360.
[14] 程超,付君,唐心龙,陈志,任露泉. 振动形式对水稻脱出物界面粘附规律的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1228-1235.
[15] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!