吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (8): 1943-1950.doi: 10.13229/j.cnki.jdxbgxb20210205

• 农业工程·仿生工程 • 上一篇    

三角履带式再生稻收割机底盘的设计与试验

曾山1,2(),黄登攀1,2,杨文武1,2(),刘伟健1,2,文智强1,2,曾力1,2   

  1. 1.华南农业大学 工程学院,广州 510642
    2.华南农业大学 南方农业机械与装备关键技术教育部重点实验室,广州 510642
  • 收稿日期:2021-03-17 出版日期:2022-08-01 发布日期:2022-08-12
  • 通讯作者: 杨文武 E-mail:shanzeng@scau.edu.cn;yangwenwu@scau.edu.cn
  • 作者简介:曾山(1973-),男,副研究员,博士. 研究方向:智能农机技术与装备. E-mail: shanzeng@scau.edu.cn
  • 基金资助:
    现代农业产业技术体系建设专项基金项目(CARS-01-41)

Design and test of the chassis of triangular crawler reclaiming rice harvester

Shan ZENG1,2(),Deng-pan HUANG1,2,Wen-wu YANG1,2(),Wei-jian LIU1,2,Zhi-qiang WEN1,2,Li ZENG1,2   

  1. 1.College of Engineering,South China Agricultural University,Guangzhou 510642,China
    2.Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education,South China Agricultural University,Guangzhou 510642,China
  • Received:2021-03-17 Online:2022-08-01 Published:2022-08-12
  • Contact: Wen-wu YANG E-mail:shanzeng@scau.edu.cn;yangwenwu@scau.edu.cn

摘要:

针对目前采用普通履带式收割机收获头季再生稻碾压率高、尚无成熟再生稻头季收割机产品的问题,结合再生稻种植模式和收获要求,设计了一种三角履带式再生稻收割机底盘。对三角履带式再生稻收割机底盘的整机结构和工作原理进行了阐述,设计了液压行走系统;对底盘性能进行了理论分析。进行了田间试验,结果表明:三角履带式再生稻收割机底盘田间道路行驶速度范围为0~4.5 km/h,水田作业速度范围为0~2.8 km/h,水田行驶最小转弯半径为1780 mm,最大爬坡角度为32°,最大越埂高度为215 mm,能够满足再生稻头季收获田间行走要求;田间实际碾压率为31.7%,相比于普通履带式收割机降低了21.5%。

关键词: 农业机械化工程, 底盘, 再生稻, 液压, 收割机

Abstract:

Aiming at the problem of the current common crawler harvester harvesting first-season regenerative rice with high crushing rate and no mature regenerated rice first-season harvester products, combined with the agronomic requirements of the first-season harvesting of regenerated rice, a triangular crawler-type regenerative rice harvesting was designed. The whole structure and working principle of the chassis of the triangular crawler reclaimed rice harvester are described, the hydraulic walking system is designed, and a theoretical analysis on the performance of chassis is carried out. Field tests were carried out on the chassis of the triangular crawler regenerated rice harvester. The test results showed that the speed range of the triangular crawler regenerated rice harvester chassis in the field is 0~4.5 km/h, and the speed range of paddy field operation is 0~2.8 km/h. The minimum turning radius of paddy field driving is 1780 mm, the maximum climbing angle is 32°, and the maximum ridge height is 215 mm, which can meet the requirements of field walking in the harvesting season of regenerated rice. The actual rolling rate in the field is 31.7%, which is 21.5% lower than that of the common crawler harvester.

Key words: agricultural mechanization engineering, chassis, regenerated rice, hydraulic, harvester

中图分类号: 

  • S225.4

图1

三角履带式再生稻收割机1-液压油箱;2-粮箱;3-卸粮滚筒;4-脱粒清选装置;5-散热器;6-底盘;7-输送槽;8-割台装置;9-拨禾轮"

表1

三角履带式再生稻收割机底盘主要技术参数"

参 数数值
外形尺寸(长×宽×高)/(mm×mm×mm)5300×2680×3150
装载质量/kg4800
配套动力/kW74.5
驱动方式四轮驱动
转向方式差速转向
轮距/mm1500
轴距/mm1800
履带宽度/mm280
履带接地长度/mm800
最小离地间隙/mm600
行驶速度/(km·h-10~4.5

图2

液压系统原理图1-发动机;2-主泵;3-液压行走马达;4-脚踏阀;5-齿轮分流马达;6-多路换向阀;7-转向油缸;8-散热器;9-转向器;10-溢流阀;11-先导泵;12-过滤器;13-油箱"

图3

三角履带式再生稻收割机底盘纵向极限翻倾受力分析"

图4

三角履带式再生稻收割机底盘履带轮越埂受力分析"

表2

田间试验结果"

参 数检测结果技术要求
行驶速度/(km·h-10~4.50~4.5
作业速度/(km·h-10~2.80~2.8
最小转弯半径/mm1780≤1900
最大爬坡角度/(°)32≥30
最大越埂高度/mm215≥200
轮陷深度/mm257≤300

图5

碾压情况对比"

1 谢华安. 超级稻再生栽培高产特征及示范效果[C]∥2007中国科协年会专题论坛“红莲型杂交水稻学术专题研讨会”论文汇编, 武汉, 湖北, 中国, 2007: 189-195.
2 郭文韬. 略论中国再生稻的历史发展[J]. 中国农史, 1993(4): 1-6.
Guo Wen-tao. On the historical development of ratooning rice in china[J]. Chinese Agricultural History, 1993(4): 1-6.
3 张桂莲,屠乃美,袁菊红,等. 播种期对再生稻腋芽萌发和产量的影响[J]. 湖南农业大学学报:自然科学版, 2005(3): 229-232.
Zhang Gui-lian, Tu Nai-mei, Yuan Ju-hong, et al. Effects of sowing stage on the sprouting of axillary bud and yield of ratooning rice[J]. Journal of Hunan Agricultural University(Natural Sciences), 2005(3): 229-232.
4 朱永川, 熊洪, 徐富贤, 等. 再生稻栽培技术的研究进展[J]. 中国农学通报, 2013, 29(36): 1-8.
Zhu Yong-chuan, Xiong Hong, Xu Fu-xian, et al. Progress on research of ratoon rice cultivation technology[J]. Chinese Agricultural Science Bulletin, 2013, 29(36): 1-8.
5 农业部关于印发《全国种植业结构调整规划(2016~2020年)》的通知[J]. 中华人民共和国农业部公报, 2016(5): 47-55.
Notice of ministry of agriculture on the issuance of national planting industry structure adjustment plan (2016~2020)[J]. Bulletin of the Ministry of Agriculture of the People's Republic of China, 2016(5): 47-55.
6 刘正忠. 再生稻头季机收关键技术分析[J]. 农业科技通讯, 2013(4): 118-120.
Liu Zheng-zhong. Analysis on key technology of mechanical harvesting of ratoon rice[J]. Agricultural Science and Technology Communication, 2013(4): 118-120.
7 郭翰林, 林建, 施火结, 等. 再生稻头季收获机械化的现状与发展趋势[J]. 福建农机, 2016(1): 16-18.
Guo Han-lin, Lin Jian, Shi Huo-jie, et al. Current situation and development trend of first harvest mechanization of ratoon rice[J]. Fujian Agricultural Machinery, 2016(1): 16-18.
8 马晓春. 中稻蓄留再生稻品种筛选与头季收获方式对再生季产量的影响[D]. 武汉: 华中农业大学植物科学技术学院, 2015.
Ma Xiao-chun. Studies on variety screening ratoon rice and the effect of main crop harvesting model on ratoon crop yield[D]. Wuhan: College of Plant Science and Technology, Huazhong Agricultural University, 2015.
9 肖森. 再生稻头季机收对再生季产量和品质的影响[D]. 武汉: 华中农业大学植物科学技术学院, 2018.
Xiao Sen. Effect of mechanical harvesting of main crop on the grain yield and quality of ratoon crop on ratooned rice[D]. Wuhan: College of Plant Science and Technology, Huazhong Agricultural University, 2018.
10 张国忠,张翼翔,黄见良,等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131-136.
Zhang Guo-zhong, Zhang Yi-xiang, Huang Jian-liang, et al. Design and performance test of ratoon rice cutting machine[J]. Journal of Huazhong Agricultural University, 2016, 35(1): 131-136.
11 刘竣. 高地隙轮式再生稻收割机的设计与试验[D]. 广州: 华南农业大学工程学院, 2019.
Liu Jun. Design and experiment of high clearance wheeled ratoon rice harvester[D]. Guangzhou: College of Engineering, South China Agricultural University, 2019.
12 付建伟,张国忠,谢干,等. 双通道喂入式再生稻收获机研制[J]. 农业工程学报, 2020, 36(3): 11-20.
Fu Jian-wei, Zhang Guo-zhong, Xie Gan, et al. Development of double-channel feeding harvester for ratoon rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 11-20.
13 施国标,林逸,张昕. 动力转向技术及其发展[J]. 农业机械学报, 2006(10): 173-176.
Shi Guo-biao, Lin Yi, Zhang Xin. Power steering of car and its development [J]. Transactions of the Chinese Society for Agricultural Machinery, 2006(10): 173-176.
14 时元玲. 全液压顶驱电液比例容积调速系统研究[D]. 长春: 吉林大学建设工程学院, 2018.
Shi Yuan-ling. Development and investigation of electro-hydraulic proportional volumetric speed control system of hydraulic top drive[D]. Changchun: College of Construction Engineering, Jilin University, 2018.
15 Li Y, He L. Counterbalancing speed control for hydrostatic drive heavy vehicle under long down-slope[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1533-1542.
16 Huang J, Dong Z, Quan L, et al. Development of a dual displacement controlled circuit for hydraulic shovel swing motion[J]. Automation in Construction, 2015, 57: 166-174.
17 王宝山. 全液压驱动高地隙履带作业车设计研究[D]. 郑州: 河南农业大学机电工程学院, 2017.
Wang Bao-shan. Design and research of full hydraulic drive high clearance tracked vehicle[D]. Zhengzhou: College of Mechanical and Electrical Engineering, Henan Agricultural University, 2017.
18 蔡岗础. 油茶果采摘机三角橡胶履带轮底盘的设计与力学分析[D]. 长沙: 中南林业科技大学机电工程学院, 2014.
Cai Gang-chu. The design and mechanical analysis of oil camellia fruit picking machines rubber track system chassis[D]. Changsha: College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, 2014.
19 . 农业机械试验条件测定方法的一般规定 [S].
20 . 农业机械生产试验方法 [S].
21 . 水稻联合收割机作业质量 [S].
[1] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[2] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[3] 王同建,杨书伟,谭晓丹,陈晋市,刘同文,职振领. 基于DEM⁃MBD联合仿真的液压挖掘机作业性能分析[J]. 吉林大学学报(工学版), 2022, 52(4): 811-818.
[4] 聂建军,闫修鹏,马宗正,解晓琳,郭家杰,吕亚磊. 新型弓腰式移动底盘的设计及通过性分析[J]. 吉林大学学报(工学版), 2022, 52(3): 515-524.
[5] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[6] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[7] 李卫,张怀亮,瞿维. 随机振动环境下液压直管道设计方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1222-1229.
[8] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
[9] 宋震,李俊良,刘贵强. 基于深度学习和限幅模糊的变转速液压动力源恒流量预测方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1106-1110.
[10] 王伟达,武燕杰,史家磊,李亮. 基于驾驶员意图识别的电子液压制动助力系统控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 406-413.
[11] 丛茜,徐金,马博帅,张晓超,陈廷坤. 基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J]. 吉林大学学报(工学版), 2021, 51(2): 754-760.
[12] 黄继承,沈成,纪爱敏,李显旺,张彬,田昆鹏,刘浩鲁. 工业大麻收割机切割⁃输送关键部件作业参数优化[J]. 吉林大学学报(工学版), 2021, 51(2): 772-780.
[13] 刘昕晖,李春爽,陈琳,王昕. 游梁式抽油机节能技术综述[J]. 吉林大学学报(工学版), 2021, 51(1): 1-26.
[14] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[15] 付君,张屹晨,程超,陈志,唐心龙,任露泉. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!