吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1756-1764.doi: 10.13229/j.cnki.jdxbgxb.20230067

• 交通运输工程·土木工程 • 上一篇    

检测车轨迹偏移对沥青路面磨耗计算误差的影响

惠冰1,2(),杨心怡1,张乐扬1,李扬1   

  1. 1.长安大学 公路学院,西安 710064
    2.长安大学 特殊地区公路工程教育部重点实验室,西安 710064
  • 收稿日期:2023-01-25 出版日期:2023-06-01 发布日期:2023-07-23
  • 作者简介:惠冰(1982-),男,副教授,博士.研究方向:路面检测与养护管理.E-mail:82628532@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFB2601000);国家自然科学基金项目(52178409);内蒙古自治区交通运输科技项目(NJ-2021-17)

Influence of detecting track offset on calculation error of asphalt pavement wearing

Bing HUI1,2(),Xin-yi YANG1,Le-yang ZHANG1,Yang LI1   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.The Key Laboratory of Intelligent Construction and Maintenance of CAAC,Chang'an University,Xi'an 710064,China
  • Received:2023-01-25 Online:2023-06-01 Published:2023-07-23

摘要:

为研究检测车轨迹偏移对沥青路面磨耗程度计算结果的影响,根据实测三维激光高程点云数据重构了3段磨耗等级分别为轻度、中度和重度的路表模型,绘制其全车道平均断面构造深度(MPD)热力分布图。采用三线法计算路面磨耗率XWR,分别模拟检测车向左、右偏移100和200 mm后的测线轨迹,以偏移前、后磨耗率XWR的绝对误差和相对误差为评价指标,分析轨迹偏移对磨耗率计算误差的影响规律。结果表明:检测车轨迹偏移距离越大,路面磨耗率计算的绝对误差和相对误差越大,轻度、中度和重度3个不同严重程度磨耗路段的磨耗率最大绝对误差分别为5.95%、10.71%和12.39%;路面磨耗程度越严重,磨耗率计算误差越大,较大的误差可能产生路面磨耗等级的低估,进而导致路况评价和养护决策的误判;增加测线数量、减小测线间距是降低偏移误差和提升磨耗检测准确性的有效措施。

关键词: 道路工程, 路面磨耗, 检测车轨迹偏移, 误差分析

Abstract:

To study the influence of the vehicle detecting track offset on the calculation results of the degree of wear of asphalt pavement, three models of pavement with light, medium, and heavy wear grades were reconstructed based on the measured 3D laser elevation point cloud data, the mean profile depth(MPD) distribution of its full section wear index was drawn. The three-line method was used to calculate the road wear rate XWR, and the track of the measuring line after the testing vehicle was offset to the left and right by 100 and 200 mm, respectively, were simulated. The absolute and relative errors of the wear rate XWR before and after the offset were used as evaluation indexes to analyze the influence law of the track offset on the wear rate calculation error. The results show that the larger the offset distance of the detecting track offset, the absolute error and relative error of the wear rate increase gradually. The maximum absolute errors of the wear rate of the light, moderate and heavy wear sections are 5.95%, 10.71%, and 12.39%, respectively. The heavy wear level will be misjudged as the medium wear level, which may lead to the underestimation of the grade of pavement wear, and further lead to the misjudgment of road condition evaluation and maintenance decisions. Increasing the number of measured lines and reducing the distance between measured lines are effective measures to reduce the offset error and improve the accuracy of wear detection.

Key words: road engineering, pavement wearing, vehicle track offset, error analysis

中图分类号: 

  • U418.1

图1

三维激光检测原理图"

图2

车载激光检测系统"

图3

测试路段"

图4

检测方法"

表1

路面激光点云数据示例 (0.1 mm)"

纵向横向
1276476515291530
111.7211.7310.5010.6812.3512.64
211.5311.5410.0510.7412.4812.45
????????
499911.1411.129.839.6911.2511.22
500011.5311.5510.2310.1811.5311.54

图5

路面高程数据滤波前、后对比图"

图6

沥青路面磨耗三维重构图"

图7

MPD计算模型"

图8

全断面MPD分布图"

图9

检测车未偏移路面磨耗率XWR0汇总"

图10

检测车辆偏移前、后的三线法激光测线变化示意图"

图11

检测车偏移前、后断面磨耗率XWR对比"

图12

不同偏移距离前、后路面磨耗率XWR绝对误差对比"

图13

不同偏移距离前、后路面磨耗率XWR相对误差对比"

1 Guo F C, Pei J Z, Zhang J P, et al. Study on the skid resistance of asphalt pavement: a state-of-the-art review and future prospective[J]. Construction and Building Materials, 2021, 303: No.124411.
2 Li Q J, Zhan Y, Yang G W, et al. Pavement skid resistance as a function of pavement surface and aggregate texture properties[J]. International Journal of Pavement Engineering, 2020, 21(2): 1-11.
3 黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J].中国公路学报, 2019, 32(4): 32-49.
Huang Xiao-ming, Zheng Bin-shuang. Reasearch status and progress for skid resistance performance of asphalt pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 32-49.
4 王元元, 孙璐, 刘卫东, 等. 测量路面三维纹理双目重构算法的约束改进[J]. 吉林大学学报: 工学版, 2021, 51(4): 1342-1348.
Wang Yuan-yuan, Sun Lu, Liu Wei-dong, et al. Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1342-1348.
5 赵晓华, 刘畅, 亓航, 等. 高速公路交通事故影响因素及异质性分析[J/OL]. [2023-01-25].
6 刘佳雨, 冷军强, 尚平, 等. 冰雪路面下高速公路事故及严重程度影响因素分析[J]. 哈尔滨工业大学学报, 2022, 54(3): 57-64.
Liu Jia-yu, Leng Jun-qiang, Shang Ping, et al. Analysis of traffic crashes and injury severity influence factors for ice-snow covered freeway roads[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 57-64.
7 谭忆秋, 李济鲈, 徐慧宁. 冰雪路面摩擦特性与运营风险管控研究综述[J]. 中国公路学报, 2022, 35(7): 1-17.
Tan Yi-qiu, Li Ji-lu, Xu Hui-ning. Review on friction characteristics and operation risk intelligent management of ice and snow pavement[J]. China Journal of Highway and Transport, 2022, 35(7): 1-17.
8 Han C D, Lin H H, Bo X. Experimental investigation on skid resistance of asphalt pavement under various slippery conditions[J]. International Journal of Pavement Engineering, 2015, 18(6): 485-499.
9 杨国峰, 王浩仰, 潘玉利. 基于多线纹理的路面磨耗检测及评价方法[J]. 中国公路学报, 2016, 29(3): 35-40.
Yang Guo-feng, Wang Hao-yang, Pan Yu-li. Detection and evaluation methods of pavement wearing based on multi-line texture[J]. China Journal of Highway and Transport, 2016, 29(3): 35-40.
10 亓祥宇, 黄宗才, 岳晋伟, 等. 路面磨耗指数PWI与路面抗滑性能指数SRI相关性分析及对PQI的影响[J]. 公路交通科技:应用技术版, 2020, 16(6): 150-157.
Bian Xiang-yu, Huang Zong-cai, Yue Jin-wei, et al. Correlation analysis of pavement wear index PWI and pavement skid resistance index SRI and its influence on PQI[J]. Highway Transportation Technology (Applied Technology Edition), 2020, 16(6): 150-157.
11 赵可成, 徐志枢, 朱益军, 等. 路面磨耗指数PWI在高速公路养护中的应用[C]∥中国公路学会养护与管理分会第十届学术年会论文集, 中国, 深圳, 2020: 191-196.
12 Tsai Y C, Wu Y C, Ai C B, et al. Critical assessment of measuring concrete joint faulting using 3D continuous pavement profile data[J]. Journal of Transportation Engineering, 2012, 138(11): 1291-1296.
13 李清泉, 邹勤, 张德津. 利用高精度三维测量技术进行路面破损检测[J]. 武汉大学学报: 信息科学版, 2017, 42(11): 1549-1564.
Li Qing-quan, Zou Qin, Zhang De-jin. Road pavement defect detection using high precision 3D surveying technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1549-1564.
14 Bennett C R, Solminihac H D, Chamorro A, et al. Data Collection Technologies for Road Management[M]. Washington DC: The World Bank, 2006.
15 . 公路技术状况评定标准 [S].
16 王浩仰, 杨国峰, 潘玉利. 基于路面构造深度的沥青路面磨耗状况预测研究[J]. 公路, 2019, 64(1): 59-65.
Wang Hao-yang, Yang Guo-feng, Pan Yu-li. Prediction of asphalt pavement wear condition based on pavement structure depth[J]. Highway, 2019, 64(1): 59-65.
17 张丽娜, 何东坡, 徐文远, 等. 季冻区沥青路面PWI与SRI的相关性研究[J]. 公路, 2022, 67(7): 109-116.
Zhang Li-na, He Dong-po, Xu Wen-yuan, et al. Research on the Correlation between PWI and SRI of asphalt pavement in seasonal frozen area[J]. Highway, 2022, 67(7): 109-116.
18 Simpson A L. Measurement of rutting in asphalt pavements[D]. Austin, USA: The University of Texas at Austin, 2001.
19 Simpson A L. Characterization of transverse profile[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1655(1): 185-191.
20 马荣贵, 王建锋, 李平. 沥青路面构造深度精确检测方法研究[J]. 科学技术与工程, 2014, 14(8): 265-268.
Ma Rong-gui, Wang Jian-feng, Li Ping. Research on high precision measurement of pavement texture depth[J]. Science Technology and Engineering, 2014, 14(8): 265-268.
21 窦光武. 非接触式路面构造深度量值溯源技术[J]. 长安大学学报: 自然科学版, 2014, 34(6): 70-78.
Dou Guang-wu. Contactless metrological traceability technology of pavement texture depth[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(6): 70-78.
22 王迪. 基于多点激光检测技术的车辙深度算法对比及横向偏移误差研究[D]. 西安: 长安大学公路学院, 2014.
Wang Di. Point-based laser rut detection technology on depth algorithm contrast and offset error research[D]. Xi'an: School of Highway, Chang'an University, 2014.
23 惠冰, 李甜甜, 王迪. 检测车辆横向偏移对车辙深度计算误差分析[J]. 长安大学学报: 自然科学版, 2016, 36(3): 1-6, 12.
Hui Bing, Li Tian-tian, Wang Di. Calculation error analysis of detecting lateral offset of vehicle on rut depth[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(3): 1-6, 12.
24 Liu Y Y, Wang Y Y, Cai X Y, et al. The detection effect of pavement 3D texture morphology using improved binocular reconstruction algorithm with laser line constraint[J]. Measurement, 2020, 157: No.107638.
25 Qiu S, Wang K C P, Wang W J, et al. Reducing the effect of inaccurate lane identification on PP69-10-based rut characterization[J]. Journal of Infrastructure Systems, 2015, 22(1): No. 04015009.
26 Hui B, Tsai Y, Guo M, et al. Critical assessment of the impact of vehicle wandering on rut depth measurement accuracy using 13-point based lasers[J]. Measurement, 2018, 123: 246-253.
27 Luo W, Liu L, Li L. Measuring rutting dimension and lateral position using 3D line scanning laser and inertial measuring unit[J]. Automation in Construction, 2020, 111: No. 103056.
28 Tsai Y C, Li F, Kaul V, et al. Characterizing point-based transverse pavement rut measurement errors using emerging 3D continuous profile-based laser technology[C]∥Structural Materials Technology (SMT) Conference, New York, USA, 2010: No.108.
29 李清泉, 雷波, 毛庆洲, 等. 利用激光三角法进行快速车辙检测[J]. 武汉大学学报: 信息科学版, 2010, 35(3): 302-307.
Li Qing-quan, Lei Bo, Mao Qing-zhou, et al. A fast method for pavement ruts measuring with laser triangulation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 302-307.
30 Hua L X, Lu Y, Deng J H, et al. 3D reconstruction of concrete defects using optical laser triangulation and modified spacetime analysis[J]. Automation in Construction, 2022, 142: No.104469.
31 Wang K C P, Li L, Luo W, et al. Potential measurement of pavement surface texture based on three-dimensional image data[C]∥Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 2012: No. 12-4046.
32 Li L, Wang K C P, Li Q, et al. Impacts of sample size on calculation of pavement texture indicators with 1 mm 3D surface data[J]. Periodica Polytechnica Transportation Engineering, 2017, 46(1): 42-49.
33 . 公路路基路面现场测试规程 [S].
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[6] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[7] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[8] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[9] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[10] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[11] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[12] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[13] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[14] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[15] 陈栩,曹超飞,尚静,黄明星,艾长发,任东亚. 动静水环境作用下级配离析对沥青混合料水损害的影响评价[J]. 吉林大学学报(工学版), 2023, 53(1): 210-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!