吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 3037-3049.doi: 10.13229/j.cnki.jdxbgxb.20221518
• 通信与控制工程 • 上一篇
Fa-sheng WANG1(),Bing HE1,Fu-ming SUN1(),Hui ZHOU2
摘要:
为解决相关滤波跟踪算法循环移位采样产生的边界效应,提高跟踪性能,本文提出了一种自适应内容感知空间正则化相关滤波算法。首先,提取真实的背景区域作为负样本训练滤波器,降低目标区域循环移位生成的假负样本所引起的滤波器退化问题;其次,提取目标区域的局部敏感直方图特征作为前景特征,并与空间正则化项结合,根据不同目标的外观动态更新空间正则化权值;再次,采用交替方向乘子法优化求解,将模型的优化问题分解为两个子问题,并在迭代中结合动态局部敏感直方图特征求解子问题的最优解;最后, 在5个公开基准数据集上对算法进行评估。实验结果表明,本文方法在OTB50数据集上的精确率和成功率分别为90.3%和66.1%,超过其他相关滤波算法;在OTB100数据集上的精确率和成功率分别为92.2%和69.2%,其中精确率在所有算法中排名第一,成功率则领先其他相关滤波算法。
中图分类号:
1 | Abbass M Y, Kwon K, Kim N, et al. A survey on online learning for visual tracking[J]. Visual Computer, 2021, 37: 993-1014. |
2 | Liu S, Liu D, Srivastava G, et al. Overview of correlation filter based algorithms in object tracking[J]. Complex & Intelligent Systems, 2021, 7: 1895-1917. |
3 | Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]∥International Conference on Computer Vision and Pattern Recognition(CVPR), San Francisco, USA, 2010: 2544-2550. |
4 | Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]∥European Conference on Computer Vision (ECCV), Firenze, Italy, 2012: 702-715. |
5 | Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. |
6 | Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, 2016: 1401-1409. |
7 | Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration[C]∥European Conference on Computer Vision Workshop(ECCVW), Zurich, Switzerland, 2014: 254-265. |
8 | Tang M, Zheng L, Yu B, et al. Fast kernelized correlation filter without boundary effect[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Online, 2021: 2998-3007. |
9 | 黄月平, 李小锋, 杨小冈, 等. 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43(8): 2051-2065. |
Huang Yue-ping, Li Xiao-feng, Yang Xiao-gang, et al. Advances in visual object tracking algorithm based on correlation filter[J]. Systems Engineering and Electronics, 2021, 43(8): 2051-2065. | |
10 | Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision(ICCV), Venice, Italy, 2017: 1144-1152. |
11 | Zhang F, Ma S, Yu L, et al. Learning future aware correlation filters for efficient uav tracking[J]. Remote Sensing, 2021, 13: 4111. |
12 | 姜文涛, 涂潮, 刘万军. 背景与方向感知的相关滤波跟踪[J]. 中国图象图形学报. 2021, 26(3): 527-541. |
Jiang Wen-tao, Tu Chao, Liu Wan-jun. Background and direction-aware correlation filter tracking[J]. Journal of Image and Graphics, 2021, 26(3): 527-541. | |
13 | Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 4310-4318. |
14 | Lukežic A, Vojír T, Zajc L C, et al. Discriminative correlation filter with channel and spatial reliability[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, USA, 2017: 4847-4856. |
15 | Lukežič A, Vojíř T, Zajc L, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126: 671-688 |
16 | Feng W, Han R, Guo Q, et al. Dynamic saliency-aware regularization for correlation filter-based object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3232-3245. |
17 | Dai K, Wang D, Lu H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4665-4674. |
18 | 谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435. |
Tan Jian-hao, Zhang Si-yuan. Visual tracking algorithm based on adaptive spatial regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. | |
19 | Zhao J, Li Y, Zhou Z. Learning adaptive spatial-temporal regularized correlation filters for visual tracking[J]. IET Image Processing, 2021, 15: 1758-1773. |
20 | Zhu X F, Wu X J, Xu T, et al. Complementary discriminative correlation filters based on collaborative representation for visual object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 557-568. |
21 | Wu Y, Lim J, Yang M. Online object tracking: a benchmark[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, USA, 2013: 2411-2418. |
22 | Wu Y, Lim J, Yang M. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. |
23 | Liang P, Blasch E, Ling H. Encoding color information for visual tracking: algorithms and benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644. |
24 | Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking[C]∥European Conference on Computer Vision(ECCV), Amsterdam, The Netherlands, 2016: 445-461. |
25 | Fan H, Lin L, Yang F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5369-5378. |
26 | He S, Yang Q, Lau R W H, et al. Fast weighted histograms for bilateral filtering and nearest neighbor searching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(5): 891-902. |
27 | He S, Lau R W H, Yang Q, et al. Robust object tracking via locality sensitive histograms[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5): 1006-1017. |
28 | Xu T, Feng Z H, Wu X J, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5596-5609. |
29 | Han R, Guo Q, Feng W. Content-related spatial regularization for visual object tracking[C]∥IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1-6. |
30 | Danelljan M, Bhat G, Khan F S, et al. ECO: efficient convolution operators for tracking[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6931-6939. |
31 | Li Y, Fu C, Ding F, et al. AutoTrack: towards high-performance visual tracking for uav with automatic spatio-temporal regularization[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 2020: 11920-11929. |
32 | Zheng G, Fu C, Ye J, et al. Mutation sensitive correlation filter for real-time uav tracking with adaptive hybrid label[C]∥IEEE International Conference on Robotics and Automation(ICRA), Xi'an, China, 2021: 503-509. |
33 | Huang Z, Fu C, Li Y, et al. Learning aberrance repressed correlation filters for real-time uav tracking[C]∥IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea, 2019: 2891-2900. |
34 | Han R, Feng W, Wang S. Fast learning of spatially regularized and content aware correlation filter for visual tracking[J]. IEEE Transactions on Image Processing, 2020, 29: 7128-7140. |
35 | Li F, Tian C, Zuo W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904-4913. |
36 | Zhang Y, Yang Y, Zhou W, et al. Motion-aware correlation filters for online visual tracking[J]. Sensors, 2018, 18: 3957. |
37 | 曾梦媛, 尚振宏, 刘辉, 等. 融合多层卷积特征自适应更新的目标跟踪算法[J]. 激光与光电子学进展. 2019, 57(2): 113-120. |
Zeng Meng-yuan, Shang Zhen-hong, Liu Hui, et al. Target tracking algorithm based on adaptive updating of multilayer convolution features[J]. Laser & Optoelectronics Progress, 2019, 57(2): 113-120. | |
38 | Xu T, Feng Z, Wu X, et al. Adaptive channel selection for robust visual object tracking with discriminative correlation filters[J]. International Journal of Computer Vision, 2021, 129: 1359-1375 |
39 | Chen Z, Zhong B, Li G, et al. Siamese box adaptive network for visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 2020: 6667-6676. |
40 | Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: a unifying approach[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 1328-1338. |
41 | Li B, Wu W, Wang Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4277-4286. |
42 | Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal Network[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971-8980. |
43 | Li P, Chen B, Ouyang W, et al. Gradnet: gradient-guided network for visual object tracking[C]∥IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 2019: 6161-6170. |
44 | Danelljan M, Häger G, Khan F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1430-1438. |
45 | Chen X, Yan B, Zhu J, et al. Transformer tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Online, 2021: 8122-8131. |
46 | Yan B, Peng H, Fu J, et al. Learning spatio-temporal transformer for visual tracking[C]∥IEEE/CVF International Conference on Computer Vision (ICCV), Online, 2021: 10428-10437. |
47 | Cao Z, Fu C, Ye J, et al. Hift: hierarchical feature transformer for aerial tracking[C]∥IEEE/CVF International Conference on Computer Vision(ICCV), Online, 2021: 15437-15446. |
48 | Danelljan M, Robinson A, Shahbaz K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]∥European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 472-488. |
49 | Fu C, Xu J, Lin F, et al. Object saliency-aware dual regularized correlation filter for real-time aerial tracking[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 2020, 58(12): 8940-8951. |
50 | Li B, Fu C, Ding F, et al. All-day object tracking for unmanned aerial vehicle[J]. IEEE Transactions on Mobile Computing, 2023, 22(8): 4515-4529. |
[1] | 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645. |
[2] | 赵宏伟,武鸿,马克,李海. 基于知识蒸馏的图像分类框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2307-2312. |
[3] | 才华,寇婷婷,杨依宁,马智勇,王伟刚,孙俊喜. 基于轨迹优化的三维车辆多目标跟踪[J]. 吉林大学学报(工学版), 2024, 54(8): 2338-2347. |
[4] | 张云佐,郑宇鑫,武存宇,张天. 基于双特征提取网络的复杂环境车道线精准检测[J]. 吉林大学学报(工学版), 2024, 54(7): 1894-1902. |
[5] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
[6] | 李延风,刘名扬,胡嘉明,孙华栋,孟婕妤,王奥颖,张涵玥,杨华民,韩开旭. 基于梯度转移和自编码器的红外与可见光图像融合[J]. 吉林大学学报(工学版), 2024, 54(6): 1777-1787. |
[7] | 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766. |
[8] | 王殿伟,张池,房杰,许志杰. 基于高分辨率孪生网络的无人机目标跟踪算法[J]. 吉林大学学报(工学版), 2024, 54(5): 1426-1434. |
[9] | 梁礼明,周珑颂,尹江,盛校棋. 融合多尺度Transformer的皮肤病变分割算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1086-1098. |
[10] | 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113. |
[11] | 田金鹏,侯保军. 基于深度展开自注意力网络的压缩感知图像重构[J]. 吉林大学学报(工学版), 2024, 54(10): 3018-3026. |
[12] | 车娜,朱奕明,赵剑,孙磊,史丽娟,曾现伟. 基于联结主义的视听语音识别方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2984-2993. |
[13] | 周丰丰,于涛,范雨思. 基于质谱数据的生成对抗自编码器整合投票算法[J]. 吉林大学学报(工学版), 2024, 54(10): 2969-2977. |
[14] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
[15] | 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639. |
|