吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 3037-3049.doi: 10.13229/j.cnki.jdxbgxb.20221518

• 通信与控制工程 • 上一篇    

自适应内容感知空间正则化相关滤波跟踪算法

王法胜1(),贺冰1,孙福明1(),周慧2   

  1. 1.大连民族大学 信息与通信工程学院,辽宁 大连 116600
    2.大连东软信息学院 软件学院,辽宁 大连 116023
  • 收稿日期:2022-11-27 出版日期:2024-10-01 发布日期:2024-11-22
  • 通讯作者: 孙福明 E-mail:wangfasheng@dlnu.edu.cn;sunfuming@dlnu.edu.cn
  • 作者简介:王法胜(1983-),男,教授,博士. 研究方向:计算机视觉与模式识别.E-mail: wangfasheng@dlnu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFC3320300);国家自然科学基金项目(61972068);兴辽英才计划项目(2007023);辽宁省科技计划联合计划(重点研发计划)项目(2023JH2/101800032);中央高校基本科研业务费项目(04442024055-58)

Adaptive content aware spatially-regularized correlation filter for object tracking

Fa-sheng WANG1(),Bing HE1,Fu-ming SUN1(),Hui ZHOU2   

  1. 1.School of Information and Communication Engineering,Dalian Minzu University,Dalian 116600,China
    2.School of Software,Dalian Neusoft University of Information,Dalian 116023,China
  • Received:2022-11-27 Online:2024-10-01 Published:2024-11-22
  • Contact: Fu-ming SUN E-mail:wangfasheng@dlnu.edu.cn;sunfuming@dlnu.edu.cn

摘要:

为解决相关滤波跟踪算法循环移位采样产生的边界效应,提高跟踪性能,本文提出了一种自适应内容感知空间正则化相关滤波算法。首先,提取真实的背景区域作为负样本训练滤波器,降低目标区域循环移位生成的假负样本所引起的滤波器退化问题;其次,提取目标区域的局部敏感直方图特征作为前景特征,并与空间正则化项结合,根据不同目标的外观动态更新空间正则化权值;再次,采用交替方向乘子法优化求解,将模型的优化问题分解为两个子问题,并在迭代中结合动态局部敏感直方图特征求解子问题的最优解;最后, 在5个公开基准数据集上对算法进行评估。实验结果表明,本文方法在OTB50数据集上的精确率和成功率分别为90.3%和66.1%,超过其他相关滤波算法;在OTB100数据集上的精确率和成功率分别为92.2%和69.2%,其中精确率在所有算法中排名第一,成功率则领先其他相关滤波算法。

关键词: 计算机应用, 目标跟踪, 相关滤波, 自适应空间正则化, 局部敏感直方图

Abstract:

In order to solve the annoying boundary effects in correlation filter (CF) trackers induced by cyclic shift when sampling training patches, and improve the tracking performance, an adaptive content aware spatially regularized correlation filter (ACSRCF) is proposed. Firstly, real negative samples are generated from the background area around the target object, so as to alleviate the filter degradation induced by the fake negative samples generated from the circularly shifted object patches. Secondly, the locality sensitive histogram (LSH) based foreground feature is extracted and incorporated with the spatial regularization weight which is updated adaptively according to the varied object-oriented appearances. Thirdly, the CF model is optimized using the alternative direction method of multipliers (ADMM) in which the model is decomposed into two sub-problems and the LSH-based features are used in iteration for obtaining the optimal solutions. Finally, the proposed method is evaluated on 5 public benchmark datasets. The experimental results show that the accuracy and success rate scores of our method on OTB50 dataset are 90.3% and 66.1%, respectively, exceeding the other CF trackers. The data on the OTB100 dataset are 92.2% and 69.2%, and the accuracy ranks first among all the trackers, while the success rate is ahead of other CF trackers.

Key words: computer application, object tracking, correlation filter, adaptive spatial regularization, locality sensitive histogram

中图分类号: 

  • TP391

图1

图像局部敏感直方图及统计光照不变特征的可视化"

图2

空间正则化权重图示"

图3

ACSRCF 算法跟踪框架(实线箭头代表CF训练过程,虚线箭头代表跟踪过程)"

图4

OTB50数据集上的精确率和成功率曲线图"

图5

OTB100数据集上的精确率和成功率曲线图"

图6

TC128数据集上的精确率曲线图和成功率曲线图"

图7

UAV123数据集上的精确率曲线图和成功率曲线图"

图8

LaSOT数据集上的精确率曲线图和成功率曲线图"

图9

跟踪结果可视化"

1 Abbass M Y, Kwon K, Kim N, et al. A survey on online learning for visual tracking[J]. Visual Computer, 2021, 37: 993-1014.
2 Liu S, Liu D, Srivastava G, et al. Overview of correlation filter based algorithms in object tracking[J]. Complex & Intelligent Systems, 2021, 7: 1895-1917.
3 Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]∥International Conference on Computer Vision and Pattern Recognition(CVPR), San Francisco, USA, 2010: 2544-2550.
4 Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]∥European Conference on Computer Vision (ECCV), Firenze, Italy, 2012: 702-715.
5 Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
6 Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, 2016: 1401-1409.
7 Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration[C]∥European Conference on Computer Vision Workshop(ECCVW), Zurich, Switzerland, 2014: 254-265.
8 Tang M, Zheng L, Yu B, et al. Fast kernelized correlation filter without boundary effect[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Online, 2021: 2998-3007.
9 黄月平, 李小锋, 杨小冈, 等. 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43(8): 2051-2065.
Huang Yue-ping, Li Xiao-feng, Yang Xiao-gang, et al. Advances in visual object tracking algorithm based on correlation filter[J]. Systems Engineering and Electronics, 2021, 43(8): 2051-2065.
10 Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision(ICCV), Venice, Italy, 2017: 1144-1152.
11 Zhang F, Ma S, Yu L, et al. Learning future aware correlation filters for efficient uav tracking[J]. Remote Sensing, 2021, 13: 4111.
12 姜文涛, 涂潮, 刘万军. 背景与方向感知的相关滤波跟踪[J]. 中国图象图形学报. 2021, 26(3): 527-541.
Jiang Wen-tao, Tu Chao, Liu Wan-jun. Background and direction-aware correlation filter tracking[J]. Journal of Image and Graphics, 2021, 26(3): 527-541.
13 Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 4310-4318.
14 Lukežic A, Vojír T, Zajc L C, et al. Discriminative correlation filter with channel and spatial reliability[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, USA, 2017: 4847-4856.
15 Lukežič A, Vojíř T, Zajc L, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126: 671-688
16 Feng W, Han R, Guo Q, et al. Dynamic saliency-aware regularization for correlation filter-based object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3232-3245.
17 Dai K, Wang D, Lu H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4665-4674.
18 谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435.
Tan Jian-hao, Zhang Si-yuan. Visual tracking algorithm based on adaptive spatial regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435.
19 Zhao J, Li Y, Zhou Z. Learning adaptive spatial-temporal regularized correlation filters for visual tracking[J]. IET Image Processing, 2021, 15: 1758-1773.
20 Zhu X F, Wu X J, Xu T, et al. Complementary discriminative correlation filters based on collaborative representation for visual object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 557-568.
21 Wu Y, Lim J, Yang M. Online object tracking: a benchmark[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, USA, 2013: 2411-2418.
22 Wu Y, Lim J, Yang M. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
23 Liang P, Blasch E, Ling H. Encoding color information for visual tracking: algorithms and benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644.
24 Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking[C]∥European Conference on Computer Vision(ECCV), Amsterdam, The Netherlands, 2016: 445-461.
25 Fan H, Lin L, Yang F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5369-5378.
26 He S, Yang Q, Lau R W H, et al. Fast weighted histograms for bilateral filtering and nearest neighbor searching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(5): 891-902.
27 He S, Lau R W H, Yang Q, et al. Robust object tracking via locality sensitive histograms[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5): 1006-1017.
28 Xu T, Feng Z H, Wu X J, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5596-5609.
29 Han R, Guo Q, Feng W. Content-related spatial regularization for visual object tracking[C]∥IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1-6.
30 Danelljan M, Bhat G, Khan F S, et al. ECO: efficient convolution operators for tracking[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6931-6939.
31 Li Y, Fu C, Ding F, et al. AutoTrack: towards high-performance visual tracking for uav with automatic spatio-temporal regularization[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 2020: 11920-11929.
32 Zheng G, Fu C, Ye J, et al. Mutation sensitive correlation filter for real-time uav tracking with adaptive hybrid label[C]∥IEEE International Conference on Robotics and Automation(ICRA), Xi'an, China, 2021: 503-509.
33 Huang Z, Fu C, Li Y, et al. Learning aberrance repressed correlation filters for real-time uav tracking[C]∥IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea, 2019: 2891-2900.
34 Han R, Feng W, Wang S. Fast learning of spatially regularized and content aware correlation filter for visual tracking[J]. IEEE Transactions on Image Processing, 2020, 29: 7128-7140.
35 Li F, Tian C, Zuo W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904-4913.
36 Zhang Y, Yang Y, Zhou W, et al. Motion-aware correlation filters for online visual tracking[J]. Sensors, 2018, 18: 3957.
37 曾梦媛, 尚振宏, 刘辉, 等. 融合多层卷积特征自适应更新的目标跟踪算法[J]. 激光与光电子学进展. 2019, 57(2): 113-120.
Zeng Meng-yuan, Shang Zhen-hong, Liu Hui, et al. Target tracking algorithm based on adaptive updating of multilayer convolution features[J]. Laser & Optoelectronics Progress, 2019, 57(2): 113-120.
38 Xu T, Feng Z, Wu X, et al. Adaptive channel selection for robust visual object tracking with discriminative correlation filters[J]. International Journal of Computer Vision, 2021, 129: 1359-1375
39 Chen Z, Zhong B, Li G, et al. Siamese box adaptive network for visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 2020: 6667-6676.
40 Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: a unifying approach[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 1328-1338.
41 Li B, Wu W, Wang Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4277-4286.
42 Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal Network[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971-8980.
43 Li P, Chen B, Ouyang W, et al. Gradnet: gradient-guided network for visual object tracking[C]∥IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 2019: 6161-6170.
44 Danelljan M, Häger G, Khan F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1430-1438.
45 Chen X, Yan B, Zhu J, et al. Transformer tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Online, 2021: 8122-8131.
46 Yan B, Peng H, Fu J, et al. Learning spatio-temporal transformer for visual tracking[C]∥IEEE/CVF International Conference on Computer Vision (ICCV), Online, 2021: 10428-10437.
47 Cao Z, Fu C, Ye J, et al. Hift: hierarchical feature transformer for aerial tracking[C]∥IEEE/CVF International Conference on Computer Vision(ICCV), Online, 2021: 15437-15446.
48 Danelljan M, Robinson A, Shahbaz K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]∥European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 472-488.
49 Fu C, Xu J, Lin F, et al. Object saliency-aware dual regularized correlation filter for real-time aerial tracking[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 2020, 58(12): 8940-8951.
50 Li B, Fu C, Ding F, et al. All-day object tracking for unmanned aerial vehicle[J]. IEEE Transactions on Mobile Computing, 2023, 22(8): 4515-4529.
[1] 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645.
[2] 赵宏伟,武鸿,马克,李海. 基于知识蒸馏的图像分类框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2307-2312.
[3] 才华,寇婷婷,杨依宁,马智勇,王伟刚,孙俊喜. 基于轨迹优化的三维车辆多目标跟踪[J]. 吉林大学学报(工学版), 2024, 54(8): 2338-2347.
[4] 张云佐,郑宇鑫,武存宇,张天. 基于双特征提取网络的复杂环境车道线精准检测[J]. 吉林大学学报(工学版), 2024, 54(7): 1894-1902.
[5] 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776.
[6] 李延风,刘名扬,胡嘉明,孙华栋,孟婕妤,王奥颖,张涵玥,杨华民,韩开旭. 基于梯度转移和自编码器的红外与可见光图像融合[J]. 吉林大学学报(工学版), 2024, 54(6): 1777-1787.
[7] 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766.
[8] 王殿伟,张池,房杰,许志杰. 基于高分辨率孪生网络的无人机目标跟踪算法[J]. 吉林大学学报(工学版), 2024, 54(5): 1426-1434.
[9] 梁礼明,周珑颂,尹江,盛校棋. 融合多尺度Transformer的皮肤病变分割算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1086-1098.
[10] 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113.
[11] 田金鹏,侯保军. 基于深度展开自注意力网络的压缩感知图像重构[J]. 吉林大学学报(工学版), 2024, 54(10): 3018-3026.
[12] 车娜,朱奕明,赵剑,孙磊,史丽娟,曾现伟. 基于联结主义的视听语音识别方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2984-2993.
[13] 周丰丰,于涛,范雨思. 基于质谱数据的生成对抗自编码器整合投票算法[J]. 吉林大学学报(工学版), 2024, 54(10): 2969-2977.
[14] 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600.
[15] 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!