吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3699-3710.doi: 10.13229/j.cnki.jdxbgxb.20230176

• 通信与控制工程 • 上一篇    下一篇

考虑模型-环境不确定性的仿生飞行器轨迹跟踪控制

侯胜杰1(),汪忠来2(),智鹏鹏3,郑皓2,徐璟2   

  1. 1.军事科学院 国防科技创新研究院,北京 100071
    2.电子科技大学 机械与电气工程学院,成都 611731
    3.电子科技大学 长三角研究院(湖州),浙江 湖州 313001
  • 收稿日期:2023-02-28 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 汪忠来 E-mail:houshengjiework@sina.com;wzhonglai@uestc.edu.cn
  • 作者简介:侯胜杰(1989-),男,助理研究员,博士.研究方向:仿生飞行器,系统仿真.E-mail:houshengjiework@sina.com
  • 基金资助:
    航空科学基金项目(2024Z005183001);湖州市科技计划项目(2023GZ05)

Trajectory tracking control method of biplane air vehicle considering modelenvironment uncertainty

Sheng-jie HOU1(),Zhong-lai WANG2(),Peng-peng ZHI3,Hao ZHENG2,Jing XU2   

  1. 1.National Innovation Institute of Defense Technology,Academy of Military Sciences,Beijing 100071,China
    2.School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
    3.Yangtze Delta Region Institute (Huzhou),University of Electronic Science and Technology of China,Huzhou 313001,China
  • Received:2023-02-28 Online:2024-12-01 Published:2025-01-24
  • Contact: Zhong-lai WANG E-mail:houshengjiework@sina.com;wzhonglai@uestc.edu.cn

摘要:

针对仿生微型复翼飞行器(BFMAV)运动过程中模型参数不确定性和阵风扰动对飞行轨迹的影响问题,提出一种基于自适应模型预测控制(MPC)的轨迹跟踪控制方法。依据BFMAV的结构特征,建立其六自由度非线性动力学模型;引入内外扰动项表征模型参数不确定性和阵风扰动,确定BFMAV的状态方程,并进行姿态制导律设计实时调整姿态角;将内外扰动项嵌入MPC模型中,建立考虑模型-环境不确定性的BFMAV轨迹预测模型,通过设计补偿观测器和扰动观测器实现MPC模型的自适应控制和快速求解;采用不同控制方法对自由飞行和存在内外扰动两种情况下的轨迹跟踪状态进行仿真,验证本文方法的有效性。结果表明:相比传统MPC方法,本文方法追踪性能稳定、追踪误差较小;在模型不确定性和外部扰动共存的情况下,可以精确完成BFMAV的轨迹跟踪任务。

关键词: 仿生微型复翼飞行器, 轨迹跟踪, MPC模型, 自适应控制

Abstract:

A trajectory tracking control method based on adaptive model predictive control (MPC) was proposed to address the influence of model parameter uncertainty and gust disturbance on the flight trajectory of biplane flapping-wing micro air vehicles (BFMAV) during its task process. Firstly, a six degree of freedom nonlinear dynamic model was built according to the structural characteristics of a BFMAV. Secondly, the internal and external disturbance were introduced to characteristic the model parameter uncertainty and gust disturbance, the state equation of the BFMAV was further determined, and the attitude guidance law was designed to adjust the attitude angle in real-time. Thirdly, a BFMAV trajectory prediction model considering model-environment uncertainty was built by embedding the internal and external disturbance into the MPC model. Finally, different control methods were used to simulate the trajectory tracking states in the free flight and with internal and external disturbances to verify the effectiveness of the proposed method. The results show that the proposed method has stable tracking performance and small tracking error compared with the traditional MPC method. In the case of model uncertainty and external disturbance, the trajectory tracking task of the BFMAV can be completed well.

Key words: biplane flapping-wing micro air vehicle, trajectory tracking, MPC model, adaptive control

中图分类号: 

  • V249.12

图1

BFMAV机体坐标系与航迹坐标系示意图"

图2

BFMAV翅翼坐标系示意图"

图3

BFMAV转向受力示意图"

图4

BFMAV期望偏航角示意图"

图5

BFMAV期望俯仰角示意图"

图6

MPC原理图"

图7

BFMAV的自适应MPC轨迹跟踪控制系统架构"

表1

BFMAV物理参数"

参数符号描述数值
m总质量/g15.40
Ixx轴转动惯量/(kg·m-24.9×10-6
Iyy轴转动惯量/(kg·m-24.3×10-6
Izz轴转动惯量/(kg·m-21.2×10-6
Ixz相对xz轴惯性积/(kg·m-25.6×10-7

图8

BFMAV圆周转向三维轨迹跟踪"

图9

BFMAV轨迹跟踪仿真曲线"

图10

BFMAV轨迹跟踪误差曲线"

图11

考虑时变扰动的BFMAV轨迹跟踪曲线"

图12

考虑时变扰动的BFMAV轨迹跟踪误差曲线"

表2

轨迹跟踪均方根误差对比分析"

方法

x轴均方根

误差

y轴均方根

误差

z轴均方根

误差

本文0.041 60.074 80.020 2
MPC0.168 70.143 30.079 6
1 Avionics M D. A flapping of wings[J]. Science, 2012, 335(6075): 1430-1433.
2 郑皓, 余立均, 智鹏鹏, 等. 仿生扑翼微型飞行器动态避障策略[J]. 吉林大学学报:工学版, 2023, 53(9): 2732-2740.
Zheng Hao, Yu Li-jun, Zhi Peng-peng, et al. Dynamic obstacle avoidance strategy for flapping⁃wing micro air vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2732-2740.
3 李丹. 仿生扑翼飞行器:空气动力、扑动与智能控制的完美结合[J]. 航空制造技术, 2018, 61(8): 22-24.
Li Dan. Flapping flight vehicle: ideal combination of aerodynamic, flapping and intelligent control[J]. Aeronautical Manufacturing Technology, 2018, 61(8): 22-24.
4 James E B, Chang K K, Yuri S. Control of a flapping-wing micro air vehicle: sliding-mode approach[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1223-1226.
5 肖天航, 罗东明, 郑祥明, 等. 仿生飞行器非定常气动优化设计研究进展与挑战[J]. 空气动力学学报, 2018, 36(1): 80-87.
Xiao Tian-hang, Luo Dong-ming, Zheng Xiang-ming, et al. Research progress and challenges of unsteady aerodynamic optimization design of bionic aircraft[J]. Journal of Aerodynamics, 2018, 36(1): 80-87.
6 范继祥, 周狄. 基于剪式陀螺系统的空间飞行器非线性姿态控制[J]. 机械工程学报, 2010, 46(8): 151-158.
Fan Ji-xiang, Zhou Di. Nonlinear attitude control of spacecraft based on scissor pairs of control moment gyroscope[J]. Chinese Journal of Mechanical Engineering, 2010, 46(8): 151-158.
7 李光明. 大翼展仿生飞鸟机器人机构设计与远程操作控制方法[D]. 哈尔滨: 哈尔滨工业大学机电工程与自动化学院, 2017.
Li Guang-ming. Mechanism design and remote operation control method of bionic bird robot with large wing[D]. Harbin:College of Mechanical and Electrical Engineering and Automation, Harbin Institute of Technology, 2017.
8 吴涵. 扑翼飞行器半自主导航系统的设计与实现[D]. 北京: 北京交通大学机械与电子控制工程学院, 2019.
Wu Han. Design and implementation of semi-autonomous navigation system for flapping wing aircraft[D]. Beijing: School of Mechanical,Electronic and Control Engineering, Beijing Jiaotong University, 2019.
9 刘晶, 汪超, 谢鹏, 等. 基于PD控制的仿昆虫扑翼样机研制[J]. 航空学报, 2020, 41(9):106-117.
Liu Jing, Wang Chao, Xie Peng, et al. Development of insect-like flapping wing micro air vehicle based on PD control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 106-117.
10 张西金, 方宗德, 杨小辉, 等. 微扑翼飞行器驱动装置设计与翅翼轨迹控制仿真研究[J]. 系统仿真学报, 2011, 23(4): 735-739.
Zhang Xi-jin, Fang Zong-de, Yang Xiao-hui, et al. Driving equipment design and wing motion track control simulation for micro flapping flight[J]. Journal of System Simulation, 2011, 23(4): 735-739.
11 Banazadeh A, Taymourtash N. Adaptive attitude and position control of an insect-like flapping wing air vehicle[J]. Nonlinear Dynamics, 2016, 85(1): 47-66.
12 李航, 何广平, 毕富国. 一类微型扑翼飞行器的滑模自适应姿态控制[J]. 空间控制技术与应用, 2018, 44(5): 81-88.
Li Hang, He Guang-ping, Bi Fu-guo. Sliding-mode adaptive attitude controller design for flapping-wing micro air vehicle[J]. Aerospace Control and Application, 2018, 44(5): 81-88.
13 王丙元, 张帅华, 郑芳, 等. 基于自适应终端滑模的扑翼飞行器姿态控制[J]. 控制工程, 2020, 27(2): 309-315.
Wang Bing-yuan, Zhang Shuai-hua, Zheng Fang, et al. Attitude control of flapping-wing aircraft based on adaptive terminal sliding mode[J]. Control Engineering of China, 2020, 27(2): 309-315.
14 Bluman J E, Kang C K, Shtessel Y B. Sliding mode control of a biomimetic flapping wing micro air vehicle in hover[C]∥AIAA Atmospheric Flight Mechanics Conference,Denver, USA, 2017: 1633.
15 Zheng H, Zhang Y, Husnain H M, et al. Swarm intelligence based model predictive control strategy for optimal state control of discrete time-varying MIMO linear systems [J]. International Journal of Control, Automation, and Systems, 2022, 20(10): 3433-3444.
16 Berberich J, Köhler J, Muller M A. Data-driven model predictive control with stability and robustness guarantees[J]. IEEE Transactions on Automatic Control, 2021 66(4): 1702-1717.
17 Karg B, Lucia S. Efficient representation and approximation of model predictive control laws via deep learning[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3866-3878.
18 Zhang L, Xie J, Koch C R. Model predictive control of jacket tubular reactors with a reversible exothermic reaction[J]. Industrial and Engineering Chemistry Research, 2020, 59(42): 18921-18936.
19 Zhang Y, Zheng H, Xu J, et al. Radial basis function model-based adaptive model predictive control for trajectory tracking of a clapping-wing micro air vehicle[J]. Aerospace, 2023, 10(3): No.253.
20 鲜斌, 李杰奇, 古训. 基于非线性扰动观测器的无人机地面效应补偿[J]. 吉林大学学报:工学版, 2022, 52(8): 1926-1933.
Xian Bin, Li Jie-qi, Gu Xun. Ground effects compensation for an unmanned aerial vehicle via nonlinear disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1926-1933.
[1] 田彦涛,庾文彦,季言实,谢波. 面向不同驾驶行为模型的共享控制器设计[J]. 吉林大学学报(工学版), 2024, 54(9): 2676-2686.
[2] 谢宪毅,王禹涵,金立生,赵鑫,郭柏苍,廖亚萍,周彬,李克强. 基于改变控制时域时间步长的智能车轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(3): 620-630.
[3] 张延安,杜岳峰,孟青峰,栗晓宇,刘磊,朱忠祥. 基于改进遗传算法的湿式离合器压力自适应控制[J]. 吉林大学学报(工学版), 2024, 54(3): 852-864.
[4] 刘果,熊坚,杨秀建,何扬帆. 基于曲率增广的智能车辆轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(12): 3717-3728.
[5] 张刘,曾庆铭,赵寰宇,范国伟. 基于Lyapunov理论的卫星大挠性太阳能帆板分布式自适应振动抑制控制方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2676-2685.
[6] 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652.
[7] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[8] 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095.
[9] 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695.
[10] 刘明,荣学文,李贻斌,张帅帅,尹燕芳,阮久宏. 基于地形聚类分析的移动机器人速度自适应控制[J]. 吉林大学学报(工学版), 2021, 51(4): 1496-1505.
[11] 谭永营,伊善贞,薛大兵,王晓明,袁磊. 负载型四足步行平台对角步态重量自适应行走控制[J]. 吉林大学学报(工学版), 2021, 51(4): 1506-1517.
[12] 周挺,徐宇工,吴斌. 球形机器人的自适应分数阶PIλDμ滑模速度控制方法[J]. 吉林大学学报(工学版), 2021, 51(2): 728-737.
[13] 陈吉清,蓝庆生,兰凤崇,刘照麟. 基于轮胎力预判与拟合的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1565-1573.
[14] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[15] 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .