吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2168-2174.doi: 10.13229/j.cnki.jdxbgxb20220346

• • 上一篇    

基于自适应控制的燃料电池发动机热管理策略

刘岩(),丁天威,王宇鹏,都京,赵洪辉()   

  1. 中国第一汽车集团有限公司 研发总院,长春 130011
  • 收稿日期:2022-03-30 出版日期:2022-09-01 发布日期:2022-09-13
  • 通讯作者: 赵洪辉 E-mail:liuyan127@faw.com.cn;zhaohonghui@faw.com.cn
  • 作者简介:刘岩(1993-),男,工程师,硕士. 研究方向:燃料电池发动机开发. E-mail:liuyan127@faw.com.cn
  • 基金资助:
    吉林省科技发展计划项目(20200501010GX);国家自然科学基金区域创新发展联合基金项目(U21A20166)

Thermal management strategy of fuel cell engine based on adaptive control strategy

Yan LIU(),Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO()   

  1. General R&D Institute,China FAW Group Co. ,Ltd. ,Changchun 130011,China
  • Received:2022-03-30 Online:2022-09-01 Published:2022-09-13
  • Contact: Hong-hui ZHAO E-mail:liuyan127@faw.com.cn;zhaohonghui@faw.com.cn

摘要:

针对燃料电池汽车发动机热管理系统,以电堆不同操作条件下出、入口最佳温度值为目标函数,考虑了部件及环境干扰,建立了基于参数估计的仿真模型,设计了基于自适应控制的热管理控制策略。对燃料电池发动机热管理干扰的不确定性和系统状态迟滞的问题进行了改进。仿真结果表明:本文热管理策略在不同电堆运行工况下具有较好的适应性,能够达到电堆出、入口温度稳定于设定值以及系统温度在大、小循环开启时变化最小的目标。

关键词: 车辆工程, 燃料电池汽车, 热管理, 自适应控制

Abstract:

For the thermal management system of fuel cell vehicle engine, taking the optimal temperature value at the inlet and outlet of the stack under different operating conditions as the objective function and considering the interference of components and environment, the simulation model based on parameter estimation is established, and the thermal management control strategy based on adaptive control is designed. The problems of thermal management interference uncertainty and system state hysteresis of fuel cell engine are improved. The simulation results show that the thermal management strategy has good adaptability under different reactor operating conditions, and can achieve the goal of stabilizing the inlet and outlet temperature of the reactor at the set value and minimizing the change of the system temperature when the large and small cycles are turned on.

Key words: vehicle engineering, fuel cell vehicle, heat management, adaptive control method

中图分类号: 

  • U469.72

图1

燃料电池发动机热管理构型图"

图2

热管理控制策略简图"

表1

热管理系统主要参数"

参数数值
冷却液比热容/[kJ·(kg·K)-13.5×103
空气密度/(kg·m-30.98
散热风扇有效面积/m20.65
空气比热容/[kJ·(kg·K)-11.005
水泵PWM信号0.2~0.8
风扇PWM信号0.2~0.8
初始冷却回路入口温度/℃60
环境温度/℃25

图3

燃料电池发动机工况分解简图"

图4

电堆冷却入口观测误差图"

图5

电堆冷却回路出口观测误差图"

表2

控制结果 (℃)"

项目目标值结果误差
入口温度6667.4~66.01.4
出口温度17069.7~70.20.3
出口温度27171~71.80.8
出口温度37372.5~73.00.5

图6

冷却回路温度实测图"

图7

冷却回路温度实测简图"

图8

燃发动机冷却回路入口观测图"

1 周雅夫, 邵芳雪, 黄立建, 等. 燃料电池车用新型低纹波DC/DC变换器设计[J]. 吉林大学学报: 工学版, 2020, 50(4): 1201-1208.
Zhou Ya-fu, Shao Fang-xue, Huang Li-jian, et al. Design of a new low ripple DC/DC converter for fuel cell vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1201-1208.
2 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能管理策略[J]. 吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 36-43.
3 Tao X, Wagner J R. An engine thermal management system design for military ground vehicle-simultaneous fan, pump and valve control[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems,2016, 9(1): 243-254.
4 Li K, Zhang Y, Liu X, et al. An adaptive optimization control strategy for advanced engine thermal management systems[C]∥2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI),Tianjin, China, 2021:1-5.
5 Salah M H, Mitchell T H, Wagner J R, et al. Nonlinear-control strategy for advanced vehicle thermal-management systems[J]. IEEE Transactions on Vehicular Technology, 2008, 57(1): 127-137.
6 Setlur P, Wagner J R, Dawson D M, et al. An advanced engine thermal management system: Nonlinear control and test[J]. IEEE/ASME Transactions on Mechatronics, 205, 10(2): 210-220.
7 Lu L, Chen H, Hu Y F, et al. Modeling and optimization control for an engine electrified cooling system to minimize fuel consumption[J]. IEEE Access, 2019, 7: 72914-72927.
8 Feru E, Willems F, de Jager B, et al. Model predictive control of a waste heat recovery system for automotive diesel engines[C]∥2014 18th International Conference on System Theory, Control and Computing (ICSTCC),Sinaia, Romania, 2014: No.6982492.
9 Luptowski B J, Arici O, Johnson J H, et al. Development of the enhanced vehicle and engine cooling system simulation and application to active cooling control[C]∥SAE 2005 World Congress & Exhibition, Warrendale, PA, USA, 2005: 1-14.
10 Wang T T, Wagner J. Advanced automotive thermal management nonlinear radiator fan matrix control[J]. Control Engineering Practice, 2015, 41: 113-123.
11 Davo M A, Bresch-Pietri D, Prieur C, et al. Stability analysis of a 22 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals[J]. IEEE Transactions on Automatic Control, 2018, 64(4): 1718-1725.
12 Hua C C, Feng G, Guan X P. Robust controller design of a class of nonlinear time delay systems via backstepping method[J]. Automatica, 2008, 44(2): 567-573.
[1] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[2] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[3] 都京,赵洪辉,王宇鹏,丁天威,魏凯,王恺,韩令海. 基于AMESim模型的燃料电池发动机排氢策略优化及整车搭载验证[J]. 吉林大学学报(工学版), 2022, 52(9): 2069-2076.
[4] 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095.
[5] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[6] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[7] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[8] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[9] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[10] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[11] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[12] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[13] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[14] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
[15] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!