吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 382-391.doi: 10.13229/j.cnki.jdxbgxb.20230200

• 农业工程·仿生工程 • 上一篇    

真空吸盘的仿生设计与吸附性能分析

熙鹏1(),丛茜2(),叶绍波1,李红波1,张燕青1   

  1. 1.山西农业大学 农业工程学院,山西 晋中 032699
    2.吉林大学 生物与农业工程学院,长春 130022
  • 收稿日期:2023-03-07 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 丛茜 E-mail:13029127775@163.com;yydljxp2000@126.com
  • 作者简介:熙鹏(1987-),男,讲师,博士.研究方向:生物吸附性与仿生吸盘. E-mail: 13029127775@163.com
  • 基金资助:
    国家自然科学基金项目(51775234);山西省高等学校科技创新项目(2021L162);山西农业大学博士科研启动项目(2021BQ35);山西省博士毕业生来晋工作奖励资金科研项目(SXBYKY2021076)

Bionic design and adsorption performance analysis of vacuum sucker

Peng XI1(),Qian CONG2(),Shao-bo YE1,Hong-bo LI1,Yan-qing ZHANG1   

  1. 1.College of Agricultural Engineering,Shanxi Agricultural University,Jinzhong 032699,China
    2.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
  • Received:2023-03-07 Online:2025-01-01 Published:2025-03-28
  • Contact: Qian CONG E-mail:13029127775@163.com;yydljxp2000@126.com

摘要:

本文从仿生学角度出发,对基于鲍鱼腹足优良吸附性的仿生吸盘吸附性能进行研究。通过提取腹足表面形态设计仿生吸盘,并对吸盘吸附性进行模拟分析,选取模拟结果良好的仿生吸盘进行拉伸实验,根据实验结果探究吸附机理。结果表明,密封环宽度对仿生吸盘Mises应力具有较大影响,而沟槽距吸盘中心距离与沟槽分布数量的影响很小。密封环宽度为1.5 mm的仿生吸盘所受Mises应力要大于宽度为3 mm的仿生吸盘。在40%真空度下,密封环宽度为1.5 mm,沟槽距吸盘中心距离为20 mm,沟槽分布数量为12的仿生吸盘具有最大吸附力,其最大吸附力比标准吸盘提高了5.32%。本研究表明仿生吸盘可以有效提高吸盘的吸附性能。仿生吸盘密封环结构可以有效阻止吸盘边缘向内收缩,同时沟槽结构可以延缓吸盘内腔与外界连通的可能,从而达到提高吸盘吸附性能的目的。

关键词: 工程仿生学, 吸盘, 鲍鱼, 密封环, 条纹沟槽, 吸附性

Abstract:

The adsorption performance of bionic sucker based on the excellent adsorption of abalone abdominal foot was studied from the perspective of bionics. The surface morphology of the abdominal foot was extracted to design the bionic sucker, and the adsorption of the sucker was simulated and analyzed. The bionic sucker with good adsorption was selected for tensile test, and the adsorption mechanism was explored according to the experimental results. The width of the sealing ring has a great effect on the Mises stress of the bionic sucker, while the distance between the groove and the center of the sucker and the number of grooves distribution have little effect. The stress on the sucker bottom with a sealing ring width of 1.5 mm is greater than that of the bionic sucker with a width of 3 mm. The bionic sucker with the width of sealing ring of 1.5 mm, the distance between groove and center of sucker of 20 mm, and the number of grooves distributed is 12 has the largest adsorption force under 40% vacuum degree, and its maximum adsorption force is 5.32% higher than that of standard sucker. The bionic sucker can improve the adsorption performance of the sucker. The bionic sucker sealing ring structure can effectively prevent the edge of the sucker from shrinking inward and the groove structure can delay the connection between the inner cavity of the sucker and the outside, which is the key to improving the adsorption performance of the sucker.

Key words: engineering bionics, sucker, abalone, sealing ring, stripe groove, adsorption

中图分类号: 

  • TB17

图1

标准吸盘结构参数"

图2

标准吸盘三维模型(局部剖视图)"

图3

鲍鱼腹足的环形小丘及条纹状沟槽"

表1

基于仿生吸盘特征的尺寸参数设计"

仿生吸盘

编号

第一特征

密封环宽度/mm

第二特征
沟槽距吸盘 中心距离/mm沟槽 分布数量
11.51224
21.51220
31.51215
41.51212
51.52024
61.52020
71.52015
81.52012
931224
1031220
1131215
1231212
1332024
1432020
1532015
1632012
标准吸盘000

图4

不同型号仿生吸盘三维模型对比"

图5

测量吸盘Mises应力的5个区域"

表2

仿生与标准吸盘底面在不同区域的Mises应力值 (Pa)"

吸盘类别区域
12345
仿生1号87 40341 14145 474258 36028 847
仿生2号85 27653 01770 338259 77031 627
仿生3号86 41233 74849 430263 64033 502
仿生4号91 85940 64649 804259 45027 217
仿生5号89 24640 17430 462293 41026 033
仿生6号97 16044 44163 827281 63023 956
仿生7号94 94643 52434 078286 28027 885
仿生8号93 38839 55253 890289 34026 849
仿生9号82 32735 38754 487231 04028 748
仿生10号84 82235 21062 196213 63032 504
仿生11号92 75831 61277 550205 75040 407
仿生12号91 47034 73259 046221 75029 323
仿生13号86 83134 46859 992222 95010 439
仿生14号97 37537 32952 451208 70038 393
仿生15号97 53247 71447 961215 89047 215
仿生16号94 07542 59456 051214 23037 651
标准吸盘35 20038 80045 70053 00057 200

图6

不同沟槽数量的仿生吸盘Mises应力曲线图"

图7

仿生吸盘在区域1和区域4处的Mises应力"

图8

沟槽与吸盘中心不同距离的仿生吸盘Mises应力曲线"

图9

不同密封环宽度的仿生吸盘Mises应力曲线"

图10

标准吸盘和5~8号仿生吸盘试样的对比图"

图11

真空吸盘吸附性检测实验台"

表3

40%真空度下标准与仿生吸盘的吸附力 (sucker under 40% vacuum N)"

吸盘类别

实验次数

标准

吸盘

仿生

5号

仿生

6号

仿生

7号

仿生

8号

141.8541.5638.5243.7543.84
242.6142.9938.6242.5145.46
342.4242.5137.141.1845.17
441.6643.0841.2841.5643
541.8542.4240.9943.8444.13
平均值42.07842.51239.342.56844.32
百分比/%10010193.4101105

图12

吸附实验中吸盘底面变形全过程"

1 白联强,宋仲康,王鹏.不同泄漏情况下真空吸盘内部流场仿真分析[J].机械工程师, 2018(7): 33-35, 38.
Bai Lian-qiang, Song Zhong-kang, Wang Peng. Simulation Analysis on Internal Flow Field of a Vacuum Suction Cup under Different Leakage Conditions[J]. Mechanical Engineer, 2018(7): 33-35, 38.
2 秦建华,邓晨韵,王敦球,等.基于有限元的不同布局方式对真空吸附装置的影响[J].桂林理工大学学报, 2017, 37(4): 713-717.
Qin Jian-hua, Deng Chen-yun, Wang Dun-qiu, et al. Influence analysis of different layout methods on the vacuum adsorption device based on ANSYS method[J]. Journal of Guilin University of Technology, 2017, 37(4): 713-717.
3 聂俊峰,王涛,许英南,等.柔性吸盘真空吸附性能试验[J].液压与气动,2020(5): 131-137.
Nie Jun-feng, Wang Tao, Xu Ying-nan, et al. Vacuum Adsorption Test of Flexible Suction Cup[J]. Chinese Hydraulics&Pneumatics, 2020(5): 131-137.
4 施迈茨.施迈茨——用于包装行业的新型波纹吸盘SPB 4f[EB/OL]. [2023-06-25]. .
5 AIRBEST.SOP系列圆形海绵吸盘[EB/OL]. [2023-06-25]. .
6 Peng X Y, Ma C D, Ji J X, et al. Underwater adhesion mechanisms and biomimetic study of marine life[J]. Tribology, 2020, 40(6): 816-830.
7 Maie T, Blob R W. Adhesive force and endurance of the pelvic sucker across different modes of waterfall-climbing in gobiid fishes: contrasting climbing mechanisms share aspects of ontogenetic change[J]. Zoology, 2021, 149:No. 125969.
8 Palecek A M, Schoenfuss H L, Blob R W. Sucker shapes, skeletons, and bioinspiration: how hard and soft tissue morphology generates adhesive performance in waterfall climbing goby fishes[J]. Integrative And Comparative Biology, 2022, 62(4):No.094.
9 Wang S H, Luo H Y, Linghu C H, et al. Elastic energy storage enabled magnetically actuated, octopus‐inspired smart adhesive[J]. Advanced Functional Materials, 2021, 31(9): No.2009217.
10 Baik S, Hwang G W, Jang S, et al. Bioinspired microsphere-embedded adhesive architectures for an electrothermally actuating transport device of dry/wet pliable surfaces[J]. ACS Applied Materials And Interfaces, 2021, 13(5): 6930-6940.
11 Huie J M, Summers A P. The effects of soft and rough substrates on suction-based adhesion[J]. The Journal of Experimental Biology, 2022, 225(9): No.243773.
12 Kazuma T, Yasutaka M, Masatsugu S, et al. A New Concept for an Adhesive Material Inspired by Clingfish Sucker Nanofilaments[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2022, 38(3): 1215-1222.
13 丛茜,徐金,史孝杰,等.仿生凹坑型吸盘设计与试验[J].吉林大学学报:工学版: 2024,54(4):1144-1152.
Cong Qian, Xu Jin, Shi Xiao-jie, et al. Bionic pit design and experiment of the sucker[J]. Journal of Jilin University(Engineering and Technology Edition), 2024,54(4):1144-1152.
14 Popov V L, Filippov A E, Gorb S N. Biological microstructures with high adhesion and friction: numerical approach[J]. Physics-Uspekhi, 2016, 59(9): 829-845.
15 Ditsche P, Wainwright D K, Summers A P. Attachment to challenging substrates-fouling, roughness and limits of adhesion in the northern clingfish(Gobiesox maeandricus)[J]. Journal of Experimental Biology, 2014, 217(14): 2548-2554.
16 Ditsche P, Summers A P. Learning from Northern clingfish (Gobiesox maeandricus): bioinspired suction cups attach to rough surfaces[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1784): No.20190204.
17 Chuang Y C, Chang H K, Liu G L, et al. Climbing upstream: Multi-scale structural characterization and underwater adhesion of the Pulin river loach (Sinogastromyzon puliensis)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73:76-85.
18 Zhang Y, Li S, Zuo P, et al. Adhesion behaviors of abalone under the action of water flow[J]. Frontiers in Mechanical Engineering, 2021(7): No.659468.
19 Zhang Y, Li S, Zuo P, et al. A mechanics study on the self-righting of abalone from the substrate[J]. Applied Bionics and Biomechanics, 2020(1): No.8825451.
20 Li J, Ma C, Liu J, et al. The co-effect of microstructures and mucus on the adhesion of abalone from a mechanical perspective[J]. Biosurface and Biotribology, 2021, 7(4): 180-186.
21 Lin A Y M, Brunner R, Chen P Y, et al. Underwater adhesion of abalone: the role of van der Waals and capillary forces[J]. Acta Materialia, 2009, 57(14): 4178-4185.
22 Li J, Zhang Y, Liu S, et al. Insights into adhesion of abalone: a mechanical approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, (77): 331-336.
[1] 丛茜,徐金,史孝杰,金敬福,陈廷坤. 仿生凹坑型吸盘设计与试验[J]. 吉林大学学报(工学版), 2024, 54(4): 1144-1152.
[2] 杨欣,王阳,宋家锋,朱勇,黄彬兵,许述财. 基于虾螯结构的仿生夹层板设计及数值模拟[J]. 吉林大学学报(工学版), 2024, 54(3): 842-851.
[3] 于征磊,曹青,张钧栋,沙鹏威,金敬福,魏万祯,梁平,张志辉. 基于增材制造的着陆器仿生缓冲结构的力学特性[J]. 吉林大学学报(工学版), 2024, 54(10): 3077-3084.
[4] 黄晗,闫庆昊,向枳昕,杨鑫涛,陈金宝,许述财. 基于虾螯的仿生多胞薄壁管耐撞性分析及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 716-724.
[5] 陈奕颖,金敬福,丛茜,陈廷坤,任露泉. 不同冰点介质对冰黏附强度的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1926-1932.
[6] 于征磊,陈立新,徐泽洲,信仁龙,马龙,金敬福,张志辉,江山. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547.
[7] 于征磊,信仁龙,陈立新,朱奕凝,张志辉,曹青,金敬福,赵杰亮. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报(工学版), 2021, 51(3): 1140-1145.
[8] 刘春宝,陈山石,盛闯,钱志辉,任露泉,任雷. 蜘蛛生物液压驱动原理及其功能仿生探索[J]. 吉林大学学报(工学版), 2020, 50(1): 375-381.
[9] 陈东良,臧睿,段鹏,赵伟鹏,翁旭涛,孙杨,唐艺鹏. 基于新月鱼尾推进理论的多连杆鱼骨仿生设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1246-1257.
[10] 吴娜,庄健,张克松,王慧鑫,马云海. 毛蚶贝壳曲面承压力学特性及断裂机理[J]. 吉林大学学报(工学版), 2019, 49(3): 897-902.
[11] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[12] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[13] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[14] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[15] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!