吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 3077-3084.doi: 10.13229/j.cnki.jdxbgxb.20221595

• 农业工程·仿生工程 • 上一篇    

基于增材制造的着陆器仿生缓冲结构的力学特性

于征磊1(),曹青1,张钧栋1,沙鹏威1,金敬福2(),魏万祯1,梁平1,张志辉1   

  1. 1.吉林大学 工程仿生教育部重点实验室,长春 130022
    2.吉林大学 生物与农业工程学院,长春 130022
  • 收稿日期:2022-12-13 出版日期:2024-10-01 发布日期:2024-11-22
  • 通讯作者: 金敬福 E-mail:zlyu@jlu.edu.cn;jinjingfu@jlu.edu.cn
  • 作者简介:于征磊(1984-),男,教授,博士.研究方向:仿生结构设计. E-mail:zlyu@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB4600500);国家自然科学基金项目(51975246);吉林省科技发展计划项目(20230508045RC);吉林省发改委项目(2023C041-4);重庆市科技发展计划项目(CSTB2022NSCQ-MSX0225)

Mechanical properties of a bionic buffer structure of a lander based on additive manufacturing

Zheng-lei YU1(),Qing CAO1,Jun-dong ZAHNG1,Peng-wei SHA1,Jing-fu JIN2(),Wan-zhen WEI1,Ping LIANG1,Zhi-hui ZHANG1   

  1. 1.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
    2.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
  • Received:2022-12-13 Online:2024-10-01 Published:2024-11-22
  • Contact: Jing-fu JIN E-mail:zlyu@jlu.edu.cn;jinjingfu@jlu.edu.cn

摘要:

为满足着陆缓冲器的吸能需求,从缓冲器的缓冲填充材料入手,借鉴Kelvin结构和螺旋结构,运用工程仿生原理,设计并建立了类足球烯仿生结构、多螺旋仿生结构两种结构模型。考虑到着陆器缓冲结构的吸能和可重复利用要求,通过增材制造技术并采用具有形状记忆效应的NiTi合金制备了仿生结构样件,通过模拟和试验对样件的力学特性、吸能和可回复性能进行分析验证。结果表明:通过对比仿真模拟实验和等距静压试验的力-位移曲线,验证了数值模拟的准确性;多螺旋仿生结构具有较好的力学性能,其最大吸能量为3 096.23 J;两种结构的回复率分别高达98.02%和97.12%,类足球烯仿生结构回复率略高。该研究利用增材制造法制备了腿式着陆器缓冲仿生结构,为着陆器缓冲结构仿生设计提供了参考。

关键词: 工程仿生学, 缓冲结构, 数值模拟, 增材制造, 仿生设计

Abstract:

In order to meet the energy absorption requirement of the landing buffer, this paper starts with the buffer filling material of the buffer, draws lessons from the Kelvin structure and spiral structure, and uses the engineering bionic principle to design and establish two kinds of structure models: footballene bionic structure and multi-helix bionic structure. Considering the requirement of energy absorption and reuse of the buffer structure of the lander, the biomimetic structure samples were prepared by NiTi alloy with shape memory effect and were made by additive manufacturing technology. The mechanical properties, energy absorption ability and recoverability of the samples were analyzed and verified by simulation and experiments. The results show that the accuracy of the numerical simulation is verified by comparing the force-displacement curves of the simulation test and the isometric static pressure test, in which the multi-helix bionic structure has better mechanical properties, and its maximum energy absorption is 3 096.23 J; the recovery rates of the two structures are as high as 98.02% and 97.12%, respectively, and the recovery rate of footballene bionic structure is slightly higher. In this study, the bionic buffer structure of the leg lander is prepared by the method of adding materials, which provides a reference for the bionic design of the buffer structure of the lander.

Key words: engineering bionics, buffer structure, numerical simulation, additive manufacturing, bionic design

中图分类号: 

  • TB17

图1

仿生缓冲结构"

图2

试验方式"

图3

网格无关性"

表1

两种结构的能量吸收量对比"

项目类足球烯仿生结构多螺旋仿生结构
试验能量吸收/10-3 J803.6442 684.64
模拟能量吸收/10-3 J876.3023 096.23
误差/%8.2913.29

图4

NiTi合金粉末图及其粒径分布图和力学性能曲线"

图5

两个结构的力-位移曲线(黑)和能量吸收曲线(红)"

图6

两种结构的仿真试验过程中和压缩量最大处应力云图"

图7

两种仿生结构的回复图"

表2

两种结构的回复率"

项目类足球烯仿生结构多螺旋仿生结构
原件/mm16.6916.68
压缩后/mm14.7214.74
回复后/mm16.3616.20
回复率/%98.0297.12
1 吴宏宇, 王春洁, 丁宗茂, 等. 着陆姿态不确定下的着陆器缓冲机构优化设计[J]. 宇航学报, 2018, 39(12): 1323-1331.
Wu Hong-yu, Wang Chun-jie, Ding Zong-mao, et al. Optimization design of a landing gear under uncertain landing attitude[J]. J of Astronautics, 2018, 39(12): 1323-1331.
2 王欣宇. 月球着陆器缓冲机构设计与姿态分析[J]. 电子制作, 2018(23): 95-97.
Wang Xin-yu. Buffer mechanism design and attitude analysis of lunar lander[J]. Electronic Production, 2018(23): 95-97.
3 王鹏, 李佳欣, 苏建波, 等. 月球探测器着陆缓冲机构精密装配技术[J]. 航天制造技术, 2022(3): 71-75.
Wang Peng, Li Jia-xin, Su Jian-bo, et al. Precision assembly technology of lunar probe landing buffer mechanism[J]. Aerospace Manufacturing Technology, 2022(3): 71-75.
4 罗敏, 杨建中, 韩福生, 等. “天问一号”着陆缓冲机构吸能材料设计分析与试验验证[J]. 深空探测学报:中英文, 2021, 8(5): 472-477.
Luo Min, Yang Jian-zhong, Han Fu-sheng, et al. Design analysis and experimental verification of energy-absorbing material for landing buffer mechanism of "Tianmen-1"[J]. Journal of Deep Space Exploration (Chinese and English) 2021, 8(5): 472-477.
5 董小闵, 李军礼, 于建强, 等. 月面低空飞行器着陆缓冲机构设计与仿真分析[J]. 载人航天, 2019, 25(6): 779-782, 798.
Dong Xiao-min, Li Jun-li, Yu Jian-qiang, et al. Design and simulation analysis of landing buffer mechanism for lunar low-altitude vehicle[J]. Manned spaceflight, 2019, 25(6): 779-782, 798.
6 刘志全, 黄传平. 月球探测器软着陆机构发展综述[J]. 中国空间科学技术, 2006(1): 33-39.
Liu Zhi-quan, Huang Chuan-ping. A summary of the development of lunar probe soft landing mechanism[J]. Chinese Space Science and Technology, 2006(1): 33-39.
7 王永滨, 武士轻, 牟金岗, 等. 月球着陆器着陆缓冲展开锁定机构设计与分析[J]. 航天返回与遥感, 2021, 42(1): 57-64.
Wang Yong-bin, Wu Shi-qing, Mou Jin-gang, et al. Design and analysis of landing buffer deployment locking mechanism for lunar lander[J]. Space Return and Remote Sensing, 2021, 42(1): 57-64.
8 党明珠, 向泓澔, 蔡超, 等. 4D打印形状记忆合金研究进展与展望[J]. 航空科学技术, 2022, 33(9): 94-108.
Dang Ming-zhu, Xiang Hong-hao, Cai Chao, et al. Research progress and prospect of 4D printed shape memory alloy[J]. Aviation Science and Technology, 2022, 33(9): 94-108.
9 徐汉权, 陈泽鑫, 路新, 等. 增材制造NiTi合金研究进展[J]. 粉末冶金技术, 2022, 40(2): 159-171.
Xu Han-quan, Chen Ze-xin, Lu Xin, et al. Research progress in manufacturing NiTi alloy by adding materials[J]. Powder Metallurgy Technology, 2022, 40(2): 159-171.
10 余春风, 胡永俊, 卢冰文, 等. 扫描间距对激光选区熔化NiTi形状记忆合金相变行为及力学性能的影响[J]. 激光与光电子学进展, 2021, 58(19): 265-274.
Yu Chun-feng, Hu Yong-jun, Lu Bing-wen, et al. Effect of scanning spacing on phase transformation behavior and mechanical properties of laser selective melting NiTi shape memory alloy[J]. Progress in Laser and Optoelectronics, 2021, 58(19): 265-274.
11 方嘉铖, 刘洋, 李治国, 等. 工艺参数对SLM成形NiTi合金组织及力学性能的影响[J]. 特种铸造及有色合金, 2021, 41(12): 1553-1559.
Fang Jia-cheng, Liu Yang, Li Zhi-guo, et al. Effect of process parameters on microstructure and mechanical properties of NiTi alloy formed by SLM[J]. Special Casting and Non-Ferrous Alloys, 2021, 41(12): 1553-1559.
12 宋英杰, 张红梅, 顾冬冬, 等. 激光增材制造NiTi轻量化点阵结构变形与回复行为[J]. 中国激光, 2022, 49(14): 231-243.
Song Ying-jie, Zhang Hong-mei, Gu Dong-dong, et al. Deformation and recovery behavior of NiTi lightweight lattice structure fabricated by laser augmentation[J]. China Laser, 2022, 49(14): 231-243.
13 Andani M T, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(19): 2661-2671.
14 Andani M T, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68: 224-231.
15 Hu D Y, Wang Y Z, Song B, et al. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing[J]. Composites Part B, 2019, 162:21-32.
16 Sherman J, Zhang W, Xu J. Energy Absorption performance of bioinspired honeycombs: numerical and theoretical analysis[J]. Acta Mech Solida Sin, 2021,34:884-894.
17 Niu X Q, Xu F X, Zou Z, et al. In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures[J]. Composite Structures, 2022, 299: No.116064.
18 Ma C L, Gu D D, Dai D H, et al. Tailored pore canal characteristics and compressive deformation behavior of bionic porous NiTi shape memory alloy prepared by selective laser melting[J]. Smart Materials and Structures,2020, 29(9): No.95001.
19 Sun J F, Gu D D, Lin K J, et al. Laser powder bed fusion of diatom frustule inspired bionic NiTi lattice structures: compressive behavior and shape memory effect[J]. Smart Materials and Structures, 2022, 31(7): No.74003.
20 鲁埝坤. 开尔文结构缓冲力学性能分析[D]. 广州:暨南大学力学与建筑工程学院, 2017.
Lu Nian-kun. Analysis of cushioning mechanical properties of Kelvin structure[D].Guangzhou:School of Mechanics and Construction Engineering, Jinan University, 2017.
21 Cheng L, Wang L Y, Karlsson A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J].Journal of Materials Research, 2008,23(11): 2854-2872.
22 Cheng L, Wang L Y, Karlsson A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research, 2009, 24(11): 3253-3267.
23 Neville A C. Biology of the arthropod cuticle[M]. 2nd ed. New York: Springer Verlag, 1975.
24 Vincent J F V. Arthropod cuticle: a natural composite shell system[J].Composites, Part A. Applied Science and Manufacturing,2002, 33A(10): 1311-1315.
25 Barbakadze N, Enders S, Gorb S,et al.Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae)[J].The Journal of Experimental Biology, 2006,209(4): 722-730.
26 Song Z, Ni Y, Cai S. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure[J]. Acta Biomater,2019, 91: 284-293.
27 Schäfer I, Mlikota M, Schmauder S, et al. Modelling the damping response of biomimetic foams based on pomelo fruit[J].Computational Materials Science, 2020, 183: No.109801.
28 Suksangpanya N, Yaraghi N A, Pipes R B, et al. Crack twisting and toughening strategies in Bouligand architectures[J]. Int J Solids Struct, 2018, 150: 83-106.
29 Wang X B, Yu J Y, Liu J W, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Additive Manufacturing, 2020, 36: No.101545.
30 Sa Edi S, Moghaddam N S, Amerinatanzi A, et al.On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi[J]. Acta Materialia, 2018, 144: 552-560.
31 Yu Z L, Xu Z Z, Guo Y T, et al.Study on properties of SLM-NiTi shape memory alloy under the same energy density[J]. Journal of Materials Research and Technology, 2021, 13: 241-250.
32 于征磊, 陈立新, 徐泽洲, 等. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报:工学版, 2021, 51(4): 1540-1547.
Yu Zheng-lei, Chen Li-xin, Xu Ze-zhou, et al. Analysis of mechanical characteristics and recovery characteristics of bionic protective structures based on additive manufacturing[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1540-1547.
[1] 吴金星,马宇翔,肖嘉邦,徐耀,李松歌. H型翅片椭圆管壁面磨损特性的数值模拟[J]. 吉林大学学报(工学版), 2024, 54(9): 2495-2501.
[2] 梁策,李敏,李义,梁继才,韩奇钢. 轿车前轴摇臂衬套仿生柔性接触表面摩擦特性数值模拟[J]. 吉林大学学报(工学版), 2024, 54(8): 2181-2186.
[3] 何华飞,李兆平,符瑞安,马绍麟,黄明利. 考虑地层约束效应的预制侧墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1601-1611.
[4] 娄淑梅,李一明,李鑫,陈鹏,白雪峰,程宝嘉. 基于BP神经网络和Arrhenius本构模型的石墨烯/7075复合材料热变形行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1237-1245.
[5] 赵秋,陈鹏,赵煜炜,余澳. 台后设置拱形结构的无缝桥梁整体受力性能[J]. 吉林大学学报(工学版), 2024, 54(4): 1016-1027.
[6] 杨欣,王阳,宋家锋,朱勇,黄彬兵,许述财. 基于虾螯结构的仿生夹层板设计及数值模拟[J]. 吉林大学学报(工学版), 2024, 54(3): 842-851.
[7] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[8] 张永忠,马云海. 具有高效吸能特性的新型仿蜂窝多级薄壁结构[J]. 吉林大学学报(工学版), 2024, 54(1): 259-267.
[9] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[10] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[11] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[12] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[13] 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972.
[14] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[15] 解方喜,赵士杰,王梓森,刘爽,李小平,张程. 多孔喷油器闪急沸腾喷雾坍塌影响因素的仿真分析[J]. 吉林大学学报(工学版), 2023, 53(12): 3314-3325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!