吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (8): 2295-2300.doi: 10.13229/j.cnki.jdxbgxb.20230224
摘要:
为精准检测无线传感器网络异常链路,提出基于CNN的无线传感器网络链路异常检测算法。采用并发多线程技术设计网络链路异常检测功能,利用CNN建立网络链路异常检测训练模型。输入网络链路数据,卷积处理网络链路信息,提取网络链路特征向量,并通过下采函数处理,分析网络链路异常行为,使用向量映射方式表示异常部分向量,经过Softmax函数分类器完成分类检测。实验结果表明:本文方法能有效提升链路异常分类精度和检测精度,且用时较短。
中图分类号:
1 | 杨亚让, 吴云虎. 基于随机森林的无线传感器通信网络阻塞故障检测[J]. 吉林大学学报:工学版, 2023, 53(5): 1490-1495. |
Yang Ya-rang, Wu Yun-hu. Blockage fault detection of wireless sensor communication network based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(5):1490-1495. | |
2 | 刘拥民, 杨钰津, 罗皓懿, 等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[J]. 计算机应用, 2023, 43(1):160-168. |
Liu Yong-min, Yang Yu-jin, Luo Hao-yi, et al. Wireless sensor network intrusion detection method based on two-way cyclic generation countermeasures network[J]. Computer Application, 2023,43 (1): 160-168. | |
3 | 刘敏. 基于深度学习的光纤网络链路缺陷数据检测及研究[J]. 激光杂志, 2021, 42(8):108-114. |
Liu Min. Data detection and research of optical network link defects based on deep learning[J]. Laser Journal, 2021,42(8): 108-114. | |
4 | 郁滨, 熊俊. 基于平衡迭代规约层次聚类的无线传感器网络流量异常检测方案[J]. 电子与信息学报, 2022, 44(1): 305-313. |
Yu Bin, Xiong Jun. A novel wsn traffic anomaly detection scheme based on BIRCH[J]. Journal of Electronics & Information Technology, 2022, 44(1): 305-313. | |
5 | Kumar Gupta S, Kumar S, Tyagi S. Energy efficient and effective node deployment for wireless sensor network[J]. International Journal of Communication Systems, 2022, 35(9): 21535139. |
6 | Envelope A J. Dynamic coordinator management for balancing data flow in the wireless sensor network[J]. IFAC-PapersOnLine, 2022, 55(4): 115-120. |
7 | 杨彩云, 汪小东, 汪晨, 等. 基于移动Sink的带状无线传感器网络数据汇聚方法研究[J]. 传感技术学报, 2022, 35(4): 550-557. |
Yang Cai-yun, Wang Xiao-dong, Wang Chen, et al. Research on data aggregation method of banded wsn based on mobile sink[J]. Chinese Journal of Sensors and Actuators, 2022,35(4): 550-557. | |
8 | 张书毓, 施伟斌, 王文龙, 等. 基于线性回归的无线传感器网络链路质量估计方法研究[J]. 计算机应用研究, 2022, 39(7): 2132-2136, 2155. |
Zhang Shu-yu, Shi Wei-bin, Wang Wen-long, et al. Research on link quality estimation method for wireless sensor networkbased on linear regression[J]. Application Research of Computers, 2022,39(7): 2132-2136, 2155. | |
9 | 高文志, 王彦军, 王欣伟, 等. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报:工学版, 2022, 52(2):417-424. |
Gao Wen-zhi, Wang Yan-jun, Wang Xin-wei, et al. Real-time diagnosis for misfire fault of diesel engine based on convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 417-424. | |
10 | 李红艳, 李春庚, 安居白, 等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019, 24(8): 1400-1408. |
Li Hong-yan, Li Chun-geng, An Ju-bai, et al. Attention mechanism improves CNN remote sensing image object detection[J]. Journal of Image and Graphics, 2019, 24(8): 1400-1408. | |
11 | Gan J H, Teh P C. Detection of plant diseases using deep learning based on convolution neural network (CNN)[J]. I-Manager's Journal on Image Processing, 2021, 8(4): 1-8. |
12 | Bai S, Bao F, Zhao F. On the efficiency of a cfd-based full convolution neural network for the postprocessing of field data[J]. Fluid Dynamics & Materials Processing, 2021, 17(1): 39-47. |
13 | 张志超, 王剑, 章隆兵, 等. 面向目标检测的卷积神经网络优化方法[J]. 高技术通讯, 2022, 32(3):227-238. |
Zhang Zhi-chao, Wang Jian, Zhang Long-bing, et al. Convolutional neural network optimization method for object detection[J]. Chinese High Technology Letters, 2022, 32(3): 227-238. | |
14 | Sinha R, Sur R, Sharma R, et al. Anomaly detection using system logs: a deep learning approach[J]. International Journal of Information Security and Privacy (IJISP), 2022, 16(1): 1-15. |
15 | 王慧珍, 王立德, 杨岳毅, 等. 基于Logistic集成学习的列车MVB网络异常检测方法研究[J]. 机车电传动, 2021(1):138-144. |
Wang Hui-zhen, Wang Li-de, Yang Yue-yi, et al. Anomaly detection for MVB network based on logistic ensemble learning [J]. Electric Drive for Locomotives, 2021 (1): 138-144. | |
16 | Safaei M, Driss M, Boulila W, et al. Global outliers detection in wireless sensor networks: a novel approach integrating time‐series analysis, entropy, and random forest‐based classification[J]. Software: Practice and Experience, 2022, 52(1): 277-295. |
17 | Alzubi O A. A deep learning-based frechet and dirichlet model for intrusion detection in IWSN[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(2): 873-883. |
18 | 阮峻, 孙豪, 朱志俊, 等. 直流控保系统光纤链路微弱故障的定位[J]. 中国激光, 2021, 48(20): 113-119. |
Ruan Jun, Sun Hao, Zhu Zhi-jun, et al. Location of weak faults in optical fiber links of direct current control and protection system[J]. Chinese Journal of Lasers, 2021, 48(20): 113-119. | |
19 | Liu C, Su X, Li C. Edge computing for data anomaly detection of multi-sensors in underground mining[J]. Electronics, 2021, 10(3): 302-311. |
20 | 张帆, 黄赟, 方子茁, 等. 卷积神经网络的损失最小训练后参数量化方法[J]. 通信学报, 2022, 43(4):114-122. |
Zhang Fan, Huang Yun, Fang Zi-zhuo, et al. Lost-minimum post-training parameter quantization method for convolutional neural network[J]. Journal on Communications, 2022, 43(4): 114-122. |
[1] | 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337. |
[2] | 赵宏伟,武鸿,马克,李海. 基于知识蒸馏的图像分类框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2307-2312. |
[3] | 张锦洲,姬世青,谭创. 融合卷积神经网络和双边滤波的相贯线焊缝提取算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2313-2318. |
[4] | 王晓莹,陈小海. 嵌入式无线传感器网络多链路传输随机退避算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2057-2062. |
[5] | 魏晓辉,王晨洋,吴旗,郑新阳,于洪梅,岳恒山. 面向脉动阵列神经网络加速器的软错误近似容错设计[J]. 吉林大学学报(工学版), 2024, 54(6): 1746-1755. |
[6] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
[7] | 夏超,王梦佳,朱剑月,杨志刚. 基于分层卷积自编码器的钝体湍流流场降阶分析[J]. 吉林大学学报(工学版), 2024, 54(4): 874-882. |
[8] | 张云佐,郭威,李文博. 遥感图像密集小目标全方位精准检测算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1105-1113. |
[9] | 段锦,姚安妮,王震,于林韬. 改进的麻雀搜索算法优化无线传感器网络覆盖[J]. 吉林大学学报(工学版), 2024, 54(3): 761-770. |
[10] | 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332. |
[11] | 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387. |
[12] | 张楠,史建华,亿吉,王平. 基于加权质心定位的井下移动目标实时跟踪方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1458-1464. |
[13] | 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426. |
[14] | 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457. |
[15] | 高海龙,徐一博,侯德藻,王雪松. 基于深度异步残差网络的路网短时交通流预测算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3458-3464. |
|