吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 520-528.doi: 10.13229/j.cnki.jdxbgxb.20230410

• 交通运输工程·土木工程 • 上一篇    下一篇

换道事故严重程度影响因素异质性和可转移性分析

潘义勇(),尤逸文,吴静婷   

  1. 南京林业大学 汽车与交通工程学院,南京 210037
  • 收稿日期:2023-04-26 出版日期:2025-02-01 发布日期:2025-04-16
  • 作者简介:潘义勇(1980-),男,副教授,博士.研究方向:交通运输规划与管理.E-mail: uoupanyg@njfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51508280)

Analysis of heterogeneity and transferability of factors influencing severity of lane change accidents

Yi-yong PAN(),Yi-wen YOU,Jing-ting WU   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2023-04-26 Online:2025-02-01 Published:2025-04-16

摘要:

为探究事故严重程度影响因素的异质性及可转移性,构建基于均值和方差异质性的随机参数Logit模型对换道事故伤害严重程度进行影响因素分析。将事故严重程度分为3类并从驾驶员特性、车辆特性、道路特性及道路环境特性四个方面选取27个潜在影响因素,通过随机参数的均值和方差变化捕捉事故严重程度影响因素异质性,利用对数似然比检验事故严重程度影响因素可转移性,通过边际效应定量分析各因素对事故严重程度的影响。结果显示,换道和非换道两组事故严重程度影响因素存在显著异质性;在确定各影响因素间不存在相关性的条件下,日光照射被识别为换道事故中的随机因素,其均值与驾驶员超速变速、州际公路显著相关,方差与车辆禁用功能全部损坏显著相关,信号控制被识别为非换道事故中的随机因素,其均值与驾驶员年龄为中年相关,方差与驾驶员超速变速相关;换道事故和非换道事故严重程度影响因素不存在可转移性,存在显著差异。

关键词: 交通运输安全工程, 事故严重程度, 换道, 均值和方差异质性的随机参数Logit模型, 对数似然比检验

Abstract:

To investigate the heterogeneity and transferability of factors influencing accident severity, a random parametric Logit model based on mean and variance heterogeneity is constructed to analyze the factors influencing the severity of injury in lane-changing accidents. Divide the severity of accidents into three categories and select 27 potential influencing factors from four aspects: driver characteristics, vehicle characteristics, road characteristics, and road environmental characteristics. Capturing heterogeneity in factors affecting accident severity through mean and variance changes in stochastic parameters,testing the transferability of factors influencing accident severity using log-likelihood ratios,quantifying the impact of factors on accident severity through marginal effects. The results show that there is significant heterogeneity in the factors influencing the severity of accidents in the two groups of lane change and non-lane change. Under the condition that there is no correlation between the various influencing factors, sunlight exposure is a random factor in lane changing accidents, its mean is significantly correlated with the driver's speed change and interstate highways, and its variance is significantly correlated with the complete failure of vehicle disabling functions. Signal control is a random factor in non lane changing accidents, and its mean is correlated with the driver's age as middle-aged, and its variance is correlated with the driver's speed change. There is no transferability and significant difference in the factors influencing the severity of lane change and non-lane change accidents.

Key words: engineering of communications and transportation safety, injury severity, lane change, random parameter Logit with heterogeneity in means and variances, log-likelihood ratio test

中图分类号: 

  • U491

表1

换道事故和非换道事故数据分布"

事故严重程度换道(比例)非换道(比例)
仅财产损失6 086(91.9%)5 438(88.4%)
轻伤事故426(6.4%)617(10%)
重伤事故109(1.7%)89(1.5%)

表2

事故模型参数估计结果"

因 素constant[AI]换道非换道
参数估计Z-值参数估计Z-值
道路特性5.0915.734.5819.15

道路系统

识别

联邦际公路[BI]0.457 763.21
县际公路[CI]-0.850 02-2.37
交叉口类型T/Y字型交叉[BI]1.617 933.12
限制车速限速30~40 km/h[CI]-0.835 57-2.51
限速40~50 km/h[CI]-0.651 01-2.71
道路环境特性光照条件

日光照射[AI]

(标准差)

1.269 532.84

道路表面

状况

干燥路面[AI]-0.842 44-5.21
车辆特性

碰撞影响

类型

同向碰撞[AI]0.818 45.36
前后碰撞[BI]1.247 546.7

禁用功能

损坏

全部损坏[AI]-3.245 25-11.39
部分损坏[AI]-0.679 23-3.34
车辆类型客车[CI]-1.964 32-6.58
客货两用车[CI]-1.515 51-2.83
皮卡车[CI]-2.058 18-4.91
SUV[CI]-1.778 99-5.29
摩托车[AI]-3.458 56-4.27
道路控制无控制[AI]1.506 075.93
标志控制[AI]1.657 164.69

信号控制[AI]

(标准差)

4.439 742.64
驾驶员特性

是否分心

驾驶

不分心[AI]-0.604 03-3.70.223 742.18
分心[AI]-1.522 42-4.47
驾驶员年龄0~30岁青少年[CI]-0.626 71-2.59
30~50岁中年[CI]-0.716 23-3.27
驾驶员行为

无明显机动

动作[BI]

0.852 154.371.538 179.95
疏忽操作[BI]0.532 313.441.099 069.57
超速/变速[BI]0.836 992.6
均值异质性日光照射:超/变速[BI]0.545 422.38
日光照射:州际公路[CI]-0.332 19-1.68
信号控制:中年驾驶员[AI]-1.216 92-2.42
方差异质性日光照射:禁用功能全部损坏[AI]0.593 943.15
信号控制:超/变速[BI]0.264 832.32

表3

对数似然比检验结果"

影响因素换道事故非换道事故整体事故换道代入非换道
观察次数(自由度)6 621(21)6 144(18)12 765(22)(21)
对数似然收敛函数值-1 616.59-2 381.53-3 222.795-2 145.88
对数似然初始函数值-7 273.91-6 749.87-3 559.270 9-7 273.91
McFadden20 .777 80.647 20.649 30.705 0
似然比检验结果1 476.091 058.58

表4

换道事故模型参数估计结果"

因 素换道事故
仅财产损失轻伤事故重伤事故
道路特性联邦际公路[AI]-0.003 90.005 1-0.001 2
县际公路[CI]0.000 70.000 5-0.001 2
限速30~40 km/h[CI]0.001 00.000 6-0.001 6
道路环境特性日光照射[AI]-0.006 70.004 90.001 8
干燥路面[AI]-0.024 30.018 00.006 3
车辆特性同向碰撞[AI]0.012 9-0.009 4-0.003 4
全部损坏[AI]-0.067 30.050 00.017 3
部分损坏[AI]-0.009 50.007 10.002 4
摩托车[AI]-0.002 50.001 90.000 5
驾驶员特性不分心[AI]-0.016 00.012 00.004 0
分心[AI]-0.002 30.001 70.000 6
0~30岁青少年[CI]0.001 10.000 9-0.002 0
无明显机动动作[BI]-0.004 00.004 90.000 9
疏忽操作[BI]-0.008 10.009 8-0.001 6
超速/变速[BI]-0.001 30.001 6-0.000 3

表5

非换道事故边际效应结果"

因 素非换道事故
仅财产损失轻伤事故重伤事故
道路特性T/Y字型交叉[BI]-0.001 30.001 30.000 0
限速40~50 km/h[CI]0.002 20.000 5-0.002 8
车辆特性前后碰撞[BI]-0.089 50.092 4-0.002 9
客车[CI]0.012 00.002 3-0.014 3
客货两用车[CI]0.001 00.000 2-0.001 2
皮卡车[CI]0.002 40.000 5-0.002 9
SUV[CI]0.006 10.001 2-0.007 3
无控制[AI]0.113 8-0.095 4-0.018 4
标志控制[AI]0.005 1-0.004 2-0.000 9

图1

换道事故边际效应值"

图2

非换道事故边际效应值"

1 马景峰, 任刚, 李豪杰, 等. 电动自行车与机动车事故严重性影响因素分析[J]. 交通运输系统工程与信息, 2022, 22(2): 337-348.
Ma Jing-feng, Ren Gang, Li Hao-jie, et al. Analysis of factors influencing the severity of accidents between electric bicycles and motor vehicles[J]. Transportation Systems Engineering and Information,2022, 22(2): 337-348.
2 Wu Q, Chen F, Zhang G, et al. Mixed Logit model-based driver injury severity investigations in single-and multi-vehicle crashes on rural two-lane highways[J]. Accident Analysis & Prevention, 2014, 72: 105-115.
3 Behnood A, Mannering F. Determinants of bicyclist injury severities in bicycle-vehicle crashes: a random parameters approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2017, 16: 35-47.
4 Yu M, Zheng C, Ma C. Analysis of injury severity of rear-end crashes in work zones: a random parameters approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2020, 27: 100126.
5 Wang C, Chen F, Zhang Y, et al. Temporal stability of factors affecting injury severity in rear-end and non-rear-end crashes: a random parameter approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2022, 35: 100219.
6 Zhang P, Wang C, Chen F, et al. A random-parameter negative binomial model for assessing freeway crash frequency by injury severity: daytime versus nighttime[J]. Sustainability, 2022, 14(15): 14159061.
7 Wang C, Chen F, Zhang Y, et al. Spatiotemporal instability analysis of injury severities in truck-involved and non-truck-involved crashes[J]. Analytic Methods in Accident Research, 2022, 34: 100214.
8 Yan X, He J, Zhang C, et al. Spatiotemporal instability analysis considering unobserved heterogeneity of crash-injury severities in adverse weather[J]. Analytic Methods in Accident Research, 2021, 32: 100182.
9 潘义勇, 吴静婷, 缪炫烨. 老年驾驶员事故严重程度影响因素时间不稳定性分析[J].吉林大学学报: 工学版, 2024, 54(10): 2819-2826.
Pan Yi-yong, Wu Jing-ting, Miao Xuan-ye. Temporal instability analysis of factors affecting accident severity of elderly drivers[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10): 2819-2826.
10 Adanu E K, Lidbe A, Tedla E, et al. Factors associated with driver injury severity of lane changing crashes involving younger and older drivers[J]. Accident Analysis & Prevention, 2021, 149: 105867.
11 Li Y, Song L, Fan W D. Day-of-the-week variations and temporal instability of factors influencing pedestrian injury severity in pedestrian-vehicle crashes: a random parameters logit approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2021, 29: 100152.
12 Albdairi N S S, Behnood A, Hernandez S. Temporal stability of driver injury severities in animal-vehicle collisions: a random parameters with heterogeneity in means (and variances) approach[J]. Analytic Methods in Accident Research, 2020, 26: 100120.
[1] 姚荣涵,祁文彦,胡宏宇,杜筱婧,乔延峰,王立冰. 考虑公交-合乘车道的多车道元胞自动机模型[J]. 吉林大学学报(工学版), 2025, 55(1): 162-174.
[2] 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv5算法的道路目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2658-2667.
[3] 秦雅琴,钱正富,谢济铭. 协同换道避障模型和轨迹数据驱动的车辆协同避障策略[J]. 吉林大学学报(工学版), 2024, 54(5): 1311-1322.
[4] 戢晓峰,徐迎豪,普永明,郝京京,覃文文. 山区双车道公路货车移动遮断小客车跟驰风险预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1323-1331.
[5] 邬岚,赵乐,李根. 基于方差异质性随机参数模型的汇合行为分析[J]. 吉林大学学报(工学版), 2024, 54(4): 883-889.
[6] 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710.
[7] 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv4-tiny算法的车距预警方法[J]. 吉林大学学报(工学版), 2024, 54(3): 741-748.
[8] 张卫华,刘嘉茗,解立鹏,丁恒. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2024, 54(2): 469-477.
[9] 刘刚,范群,杨旭,任宏斌. 无人驾驶汽车变速换道轨迹跟踪动态控制[J]. 吉林大学学报(工学版), 2024, 54(12): 3729-3739.
[10] 潘义勇,吴静婷,缪炫烨. 老年驾驶员事故严重程度影响因素时间不稳定性分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2819-2826.
[11] 温惠英,何梓琦,李秋灵,赵胜. 高速公路货车换道冲突预测及其影响因素分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2827-2836.
[12] 何杰,张长健,严欣彤,王琛玮,叶云涛. 基于微观动力学参数的高速公路特征路段事故风险分析[J]. 吉林大学学报(工学版), 2024, 54(1): 162-172.
[13] 杜筱婧,姚荣涵. 智能网联公交车出站强制换道的演化博弈机制[J]. 吉林大学学报(工学版), 2024, 54(1): 124-135.
[14] 贺宜,孙昌鑫,彭建华,吴超仲,江亮,马明. 电动载货三轮车风险行为及影响因素分析[J]. 吉林大学学报(工学版), 2023, 53(2): 413-420.
[15] 潘恒彦,张文会,梁婷婷,彭志鹏,高维,王永岗. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报(工学版), 2023, 53(2): 457-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!