吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 912-924.doi: 10.13229/j.cnki.jdxbgxb.20230569
颜建煌1(
),王志勇2,汤恩宏3,韩雪4,李海锋1(
),姜子钦5
Jian-huang YAN1(
),Zhi-yong WANG2,En-hong TANG3,Xue HAN4,Hai-feng LI1(
),Zi-qin JIANG5
摘要:
为促进奥氏体不锈钢在结构体系中应用,需要明确奥氏体不锈钢材料的力学性能。以材料类型和加载制度为变量,对33根棒状试件进行试验测试,获得了应力-应变曲线、应力-时间曲线以及骨架曲线,探讨了屈强比、滞回耗能和断后伸长率等力学性能指标的影响规律。在此基础上,拟合得出Johnson-Cook模型(J-C模型)的参数值,并采用ABAQUS软件建立了奥氏体不锈钢试件的有限元模型,数值模拟结果与试验结果吻合较好,验证了有限元建模方法的准确性以及J-C模型的适用性。试验结果表明:奥氏体不锈钢试件的应力-应变曲线具有显著的非线性特征,均有弹性阶段、强化阶段以及局部变形阶段,但没有明显的屈服平台;316型号奥氏体不锈钢试件在循环加载下的屈强比达到了0.857,滞回耗能和断后伸长率明显下降,其塑性变形能力逐渐减弱;303、304型号奥氏体不锈钢试件在单调和循环加载下的屈强比、滞回耗能以及断后伸长率等力学性能指标较为接近,二者具有良好的塑性变形能力。
中图分类号:
| 1 | 郑宝锋, 舒赣平, 沈晓明. 不锈钢材料常温力学性能试验研究[J]. 钢结构, 2011, 26(5): 1-6, 55. |
| Zheng Bao-feng, Shu Gan-ping, Shen Xiao-ming. Experimental study on material properties of stainless steel at room temperature[J]. Steel Construction (Chinese & English), 2011, 26(5): 1-6, 55. | |
| 2 | 陈乐, 何琨, 梁波, 等. 316不锈钢室温和350 ℃低周疲劳性能研究[J]. 核动力工程, 2017, 38(3): 51-55. |
| Chen Le, He Kun, Liang Bo, et al. Study on low-cycle fatigue property of 316 stainless steel at room temperature and 350 ℃[J]. Nuclear Power Engineering, 2017, 38(3): 51-55. | |
| 3 | 王文权, 王岩新, 王洪潇, 等. SUS301L不锈钢激光焊缝缺陷修复工艺[J]. 吉林大学学报:工学版, 2022, 52(1): 79-90. |
| Wang Wen-quan, Wang Yan-xin, Wang Hong-xiao, et al. Defects repair technology of SUS301L stainless steel laser weld[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 79-90. | |
| 4 | 景强, 方翔, 倪静姁, 等. 2304不锈钢钢筋在港珠澳大桥的应用——钢筋耐蚀性能研究[J]. 公路交通科技, 2017, 34(10): 51-56. |
| Jing Qiang, Fang Xiang, Ni Jing-ye, et al. Use of 2304 stainless steel reinforcement in Hong Kong-Zhuhai-Macau bridge—Corrsion behaviors of 2304 stainless steel reinforcement[J]. Journal of Highway and Transportation Research and Development, 2017, 34(10): 51-56. | |
| 5 | Morgenthal G, Sham R, West B. Engineering the tower and main span construction of stonecutters bridge[J]. Journal of Bridge Engineering, 2010, 15(2): 144-152. |
| 6 | Nakajima M, Uematsu Y, Kakiuchi T, et al. Effect of quantity of martensitic transformation on fatigue behavior in type 304 stainless steel[J]. Procedia Engineering, 2011, 10(7): 299-304. |
| 7 | Lee W S, Lin R F, Chen R H, et al. Effects of prestrain on high temperature impact properties of 304L stainless steel[J]. Journal of Materials Research, 2010, 25(4): 754-763. |
| 8 | 刘俭辉, 王生楠, 韦尧兵, 等. 304不锈钢低周疲劳断裂特性的研究[J]. 航空制造技术, 2013(17): 84-88. |
| Liu Jian-hui, Wang Sheng-nan, Wei Yao-bing, et al. Study on low cycle fatigue fracture properties of 304 stainless steel[J]. Aeronautical Manufacturing Technology, 2013, 437(17): 84-88. | |
| 9 | 姜公锋, 孙亮, 陈钢. 304不锈钢应变强化疲劳寿命的试验研究[J]. 机械强度, 2014, 36(6): 850-855. |
| Jiang Gong-feng, Sun Liang, Chen Gang. Experimental study of 304 stainless steel fatigue life considering material pre-strain hardening effect[J]. Journal of Mechanical Strength, 2014, 36(6): 850-855. | |
| 10 | Zhou F, Li L. Experimental study on hysteretic behavior of structural stainless steels under cyclic loading[J]. Journal of Constructional Steel Research, 2016, 122(7): 94-109. |
| 11 | 钟巍华, 鱼滨涛, 佟振峰, 等. 国产316LN不锈钢的室温低周疲劳行为研究[J]. 热加工工艺, 2017, 46(8): 66-68, 73. |
| Zhong Wei-hua, Yu Bin-tao, Tong Zhen-feng, et al. Research on low cycle fatigue behavior of domestic 316LN stainless steel at room temperature[J]. Hot Working Technology, 2017, 46(8): 66-68, 73. | |
| 12 | Hasunuma S, Ogawa T. Crystal plasticity FEM analysis for variation of surface morphology under low cycle fatigue condition of austenitic stainless steel[J]. International Journal of Fatigue, 2019, 127(10): 488-499. |
| 13 | 王元清, 常婷, 石永久. 循环荷载下奥氏体不锈钢的本构关系试验研究[J]. 东南大学学报:自然科学版, 2012, 42(6): 1175-1179. |
| Wang Yuan-qing, Chang Ting, Shi Yong-jiu. Experimental study on constitutive relationship in austenitic stainless steel under cyclic loading[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1175-1179. | |
| 14 | 王萌, 杨维国, 王元清, 等. 奥氏体不锈钢滞回本构模型研究[J]. 工程力学, 2015, 32(11): 107-114. |
| Wang Meng, Yang Wei-guo, Wang Yuan-qing, et al. Study on hysteretic constitutive model of austenitic stainless steel[J]. Engineering Mechanics, 2015, 32(11): 107-114. | |
| 15 | Obunai K, Kawase K, Fukuta T, et al. Low cycle fatigue life estimation of stainless steel[J]. Advanced Experimental Mechanics, 2018, 3(1): 152-156. |
| 16 | Abarkan I, Shamass R, Achegaf Z, et al. Numerical and analytical studies of low cycle fatigue behavior of 316 LN austenitic stainless steel[J]. Journal of Pressure Vessel Technology, 2020, 144(6): No.061507. |
| 17 | 孙治国, 杨葆洋, 张震威, 等. 循环荷载下不锈钢力学性能建模方法[J]. 地震工程学报, 2022, 44(4): 759-767. |
| Sun Zhi-guo, Yang Bao-yang, Zhang Zhen-wei, et al. Modeling method for mechanical behavior of stainless steel under cyclic loading[J]. China Earthquake Engineering Journal, 2022, 44(4): 759-767. | |
| 18 | . 金属材料拉伸试验第1部分: 室温试验方法 [S]. |
| 19 | . 钢结构设计标准 [S]. |
| 20 | Koplik J, Needleman A. Void growth and coalescence in porous plastic solids[J]. International Journal of Solids & Structures, 1988, 24(8): 835-853. |
| 21 | Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548. |
| 22 | 李云飞, 曾祥国, 盛鹰, 等. 基于实验的钛合金优化动态本构模型与有限元模拟[J]. 材料导报, 2016, 30(24): 137-142. |
| Li Yun-fei, Zeng Xiang-guo, Sheng Ying, et al. An optimal dynamic constitutive modeling of titanium alloy and FE simulation[J]. Materials Reports, 2016, 30(24): 137-142. |
| [1] | 刁延松,任义建,杨元强,赵凌云,刘秀丽,刘芸. 带有摩擦耗能组件的可更换钢梁柱拼接节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1643-1656. |
| [2] | 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015. |
| [3] | 许良,边钰博,周松,肖景厚. 高温水浸对T800/环氧树脂基复合材料性能的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1943-1950. |
| [4] | 王卫华,朱勇斌,祁神军,霍静思,郭秀泉,钟振安. 摩擦耗能型翼缘削弱式钢梁连接的承载性能[J]. 吉林大学学报(工学版), 2023, 53(5): 1400-1410. |
| [5] | 魏丽丽,胡明玉. 砂浆碱集料反应细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(12): 3501-3507. |
| [6] | 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603. |
| [7] | 魏海斌,王相焱,王富玉,张勇. 基于振动成型AC-25沥青混合料力学性能及细观分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1269-1276. |
| [8] | 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935. |
| [9] | 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945. |
| [10] | 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955. |
| [11] | 向红亮,陈盛涛,邓丽萍,张伟,詹土生. 微合金化2205双相不锈钢组织及性能[J]. 吉林大学学报(工学版), 2020, 50(5): 1645-1652. |
| [12] | 王金国,王志强,任帅,闫瑞芳,黄恺,郭劲. Ti添加量对球墨铸铁组织及力学性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1653-1662. |
| [13] | 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667. |
| [14] | 修文翠,吴化,韩英,刘云旭. 等温热处理温度对超级贝氏体组织与性能的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 520-525. |
| [15] | 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621. |
|
||