吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2401-2413.doi: 10.13229/j.cnki.jdxbgxb.20231068

• 车辆工程·机械工程 •    

基于APSO-BP-PID控制的质子交换膜燃料电池热管理系统温度控制

商蕾1(),杨萍2,杨祥国1(),潘建欣3,杨军3,张梦如1   

  1. 1.武汉理工大学 船海与能源动力工程学院,武汉 430063
    2.武汉理工大学 交通与物流工程学院,武汉 430063
    3.武汉氢能与燃料电池产业技术研究院有限公司 技术研发中心,武汉 430064
  • 收稿日期:2023-10-09 出版日期:2024-09-01 发布日期:2024-10-28
  • 通讯作者: 杨祥国 E-mail:shanglei@whut.edu.cn;yangxiangguo123@163.com
  • 作者简介:商蕾(1974-),女,教授,博士.研究方向:燃料电池热管理,系统仿真与控制.E-mail:shanglei@whut.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFB4301704);电磁能技术全国重点实验室开放基金项目(61422172220403)

Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy

Lei SHANG1(),Ping YANG2,Xiang-guo YANG1(),Jian-xin PAN3,Jun YANG3,Meng-ru ZHANG1   

  1. 1.School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063,China
    2.School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China
    3.Technology R&D Center,Wuhan Institute of Hydrogen and Fuel Cell Industrial Technology Co. ,Ltd. ,Wuhan 430064,China
  • Received:2023-10-09 Online:2024-09-01 Published:2024-10-28
  • Contact: Xiang-guo YANG E-mail:shanglei@whut.edu.cn;yangxiangguo123@163.com

摘要:

针对质子交换膜燃料电池热管理系统存在响应速度慢、系统振荡、温度波动大及强耦合性等问题,本文提出了一种冷却液流量跟随电流控制,基于自适应粒子群算法优化神经网络的PID控制策略,并在Matlab/Simulink平台搭建燃料电池堆功率为125 kW质子交换膜燃料电池热管理系统,用于分析各零部件之间的流量分配和热量交换,在不同工况下与神经网络优化的PID控制策略和传统PID控制策略进行对比。仿真结果表明:在不同工况下,本文提出的控制策略能实现散热风扇和循环水泵的解耦;在阶跃信号测试下,实现循环水泵流量跟随电流快速响应;在动态性能测试下,实现无超调且在30 s内稳定,减小系统的振荡量,减轻燃料电池堆进出口冷却液温差和燃料电池堆电压的波动程度。结果说明该控制策略具有良好的控制性能。

关键词: 动力机械工程, 燃料电池, 神经网络, 热管理系统, 控制策略

Abstract:

Aiming at solving the issues of slow response, system oscillation, large temperature fluctuation and strong coupling of the proton exchange membrane fuel cell thermal management system, this paper proposes a coolant flow following the current control, optimizes the PID control strategy of neural network based on adaptive particle swarm algorithm, and constructs a 125 kW proton exchange membrane fuel cell thermal management system on the Matlab/Simulink platform to analyze the flow distribution and heat exchange between components. Compared with PID control strategy optimized by neural network and traditional PID control strategy under different working conditions. -The simulation results show that the control strategy proposed in this paper can realize the decoupling of cooling fan and circulating water pump under different working conditions; Under the step signal test, the flow rate of the circulating water pump follows the current and responds quickly; Under the dynamic performance test, the air volume control of the cooling fan is achieved without overshoot and stable within 30 s, reducing the oscillation of the system, and both the temperature difference between the inlet and outlet coolant of the fuel cell stack and the fluctuation degree of the fuel cell stack voltage is decreased. The results indicate that the proposed control strategy achieves satisfying control performance.

Key words: power mechanical engineering, fuel cell, neural network, thermal management system, control strategy

中图分类号: 

  • TM911.4

图1

热管理系统原理图"

图2

燃料电池堆电压模型"

表1

燃料电池相关参数"

参数数值
膜电极数量340片
双极板类型金属板
质子交换膜反应面积/cm2304
质子交换膜厚度/mm0.012 5
散热方式水冷
燃料电池堆温度/℃75

图3

不同温度下125 kW燃料电池堆极化曲线与功率曲线"

表2

125 kW燃料电池堆额定工况参数"

参数数值参数数值
λ/[W·(m·K)-10.023Ist/A534
A/m21.972Ncells340
δ/m0.05σ/[W·(m2·K)-15.67×10-8
Δt/K50Tst/K348

表3

EPH1500H-00燃料电池水泵参数"

参数数值
使用介质温度/℃-40~95
额定流量/(L·min-1210
额定扬程/m22
额定转速(r·min-16 950

图4

控制策略原理图"

图5

APSO-BP-PID控制策略"

图6

BP神经网络结构示意图"

图7

迭代曲线和KP、KI、KD优化曲线"

图8

APSO-BP-PID算法流程图"

图9

125 kW燃料电池极化曲线对比图"

图10

热管理系统验证图"

图11

阶跃电流测试对比图"

图12

动态性能测试对比图"

图13

燃料电池堆进出口冷却液温差波动范围"

图14

燃料电池堆电压波动范围"

1 徐东, 刘岩, 李志勇, 等. 氢能开发利用经济性研究综述[J]. 油气与新能源, 2021,33(2): 50-56.
Xu Dong, Liu Yan, Li Zhi-yong, et al. Review of economic research on hydrogen energy development and utilization[J]. Oil & Gas & New Energy, 2021,33(2): 50-56.
2 Zhou M G, Hu T T. Analysis of carbon emission status under the carbon neutral target in China for earth's atmospheric balance[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(4): No. 042082.
3 Kang J N, Wei Y M, Liu L C, et al. Observing technology reserves of carbon capture and storage via patent data: paving the way for carbon neutral[J]. Technological Forecasting & Social Change, 2021, 171(6): No. 120933.
4 刘镇宁, 江柯, 赵韬韬,等. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报:工学版, 2022, 52(9): 2025-2033.
Liu Zhen-ning, Jiang Ke, Zhao Tao-tao, et al. Development and test of high-power proton exchange membrane fuel cell test system[J]. Journal of Jilin University(Engineering and Technology Edition, 2022, 52(9): 2025-2033.
5 李洁. 燃料电池温度控制研究[D]. 武汉: 武汉理工大学自动化学院, 2015.
Li Jie. Research on temperature control of fuel cell[D]. Wuhan: School of Automation, Wuhan University of Technology, 2015.
6 Zhao X, Li Y, Liu Z, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3048-3056.
7 李春华, 朱新坚. 基于递归模糊神经网络的PEMFC温度控制研究[J]. 热能动力工程, 2012, 27(6): 721-725,741-742.
Li Chun-hua, Zhu Xin-jian. Research on PEMFC temperature control based on recurrent fuzzy neural Network[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(6): 721-725,741-742.
8 Han J, Yu S, Yi S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4328-4341.
9 Chen F, Jiao J, Yu Y, et al. Active control of stack inlet and outlet coolant temperature for the PEM fuel cell system[C]∥2017 International Conference on Fuel Cell Science, Engineering and Technology, Tianjin, China, 2017: No. V001T01A001.
10 Carton J G, Lawlor V, Olabi A G, et al. Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels[J]. Energy, 2012, 39(1): 63-73.
11 Rojas J D, Ocampo-Martinez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled PEM fuel cell system[C]∥39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: 3806-3811.
12 Zhao D, Gao F, Massonnat P, et al. Parameter sensitivity analysis and local temperature distribution effect for a PEMFC system[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1008- 1018.
13 牛茁. 水冷型质子交换膜燃料电池热管理系统控制研究[D]. 成都: 西南交通大学电气工程学院,2018.
Niu Zhuo. Research on control of thermal management system of water-cooled proton exchange membrane fuel cell[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2018.
14 赵洪波, 刘杰, 马彪,等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150.
Zhao Hong-bo, Liu Jie, Ma Biao, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150.
15 裴尧旺, 陈凤祥, 胡哲,等. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报:工学版, 2022, 52(9): 2014-2024.
Pei Yao-wang, Chen Feng-xiang, Hu Zhe, et al. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2014-2024.
16 Huang L H, Chen J, Liu Z Y, et al. Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11550-11558.
17 Chen F X, Jiao J R, Hou Z J, et al. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control[J]. Journal of Power Sources, 2020, 479: No. 229008.
18 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: The University of Michigan, 2003.
19 Saygili Y, Eroglu I, Kincal S. Model based temperature controller development for water cooled PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(1): 615-622.
20 刘岩, 丁天威, 王宇鹏,等. 基于自适应控制的燃料电池发动机热管理策略[J].吉林大学学报:工学版, 2022, 52(9): 2168-2174.
Liu Yan, Ding Tian-wei, Wang Yu-peng, et al. Thermal management strategy of fuel cell engine based on adaptive control strategy[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[1] 特木尔朝鲁朝鲁,张亚萍. 基于卷积神经网络的无线传感器网络链路异常检测算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2295-2300.
[2] 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337.
[3] 赵宏伟,武鸿,马克,李海. 基于知识蒸馏的图像分类框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2307-2312.
[4] 张锦洲,姬世青,谭创. 融合卷积神经网络和双边滤波的相贯线焊缝提取算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2313-2318.
[5] 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776.
[6] 魏晓辉,王晨洋,吴旗,郑新阳,于洪梅,岳恒山. 面向脉动阵列神经网络加速器的软错误近似容错设计[J]. 吉林大学学报(工学版), 2024, 54(6): 1746-1755.
[7] 张玺君,余光杰,崔勇,尚继洋. 基于聚类算法和图神经网络的短时交通流预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1593-1600.
[8] 李光保,高栋,路勇,平昊,周愿愿. 基于改进神经网络和Fluent的气液固技术的内表面处理[J]. 吉林大学学报(工学版), 2024, 54(6): 1537-1547.
[9] 黄玲,崔躜,游峰,洪佩鑫,钟浩川,曾译萱. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1188-1195.
[10] 张西广,张龙飞,马钰锡,樊银亭. 基于密度峰值的海量云数据模糊聚类算法设计[J]. 吉林大学学报(工学版), 2024, 54(5): 1401-1406.
[11] 都雪静,王宁,张杰,裴玉龙. 寒区危险路段半挂汽车列车横向稳定性控制策略[J]. 吉林大学学报(工学版), 2024, 54(4): 996-1006.
[12] 夏超,王梦佳,朱剑月,杨志刚. 基于分层卷积自编码器的钝体湍流流场降阶分析[J]. 吉林大学学报(工学版), 2024, 54(4): 874-882.
[13] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[14] 周遊,洪伟,解方喜,刘宇,宫洵,李小平. 气门控制策略对无节气门发动机性能的影响[J]. 吉林大学学报(工学版), 2024, 54(1): 55-65.
[15] 高海龙,徐一博,刘坤,李春阳,卢晓煜. 基于多源数据融合的高速公路路网短时交通流参数实时预测[J]. 吉林大学学报(工学版), 2024, 54(1): 155-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!