吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 946-952.doi: 10.13229/j.cnki.jdxbgxb201404008

• • 上一篇    下一篇

高强度钢板热成形三维温度场数值模拟分析

史栋勇, 盈亮, 胡平, 申国哲, 武文华, 姜大鑫   

  1. 1.大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024;
    2.大连理工大学 工程力学系, 辽宁 大连 116024;
    3.大连理工大学 汽车工程学院, 辽宁 大连 116024
  • 收稿日期:2013-04-12 出版日期:2014-07-01 发布日期:2014-07-01
  • 通讯作者: 胡平(1956-), 男, 教授, 博士生导师.研究方向:汽车车身工程, 固体力学.E-mail:pinghu@dlut.edu.cn
  • 作者简介:史栋勇(1987-), 男, 博士研究生.研究方向:高强度钢板热成形数值模拟. E-mail:shidongyong_1987@163.com
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2010CB832700); 国家科技支撑计划项目(2013BAG05B01); 中央高校基本科研业务费专项项目(DUT14RC(3)032); 

Numerical simulation of 3D temperature field in hot forming of high strength steel

SHI Dong-yong1, 2, YING Liang3, HU Ping1, 3, SHEN Guo-zhe3, WU Wen-hua2, JIANG Da-xin3   

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2.Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
    3.School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2013-04-12 Online:2014-07-01 Published:2014-07-01

摘要: 基于三维温度场有限元理论, 考虑高强度钢板实际热成形过程中板料和水冷模具的温度边界条件, 开发了用于热成形的KMAS_HF(King mesh analysis system _ Hot forming)温度场分析模块, 其中分别采用壳体单元和三维四面体单元模拟板料和模具温度场, 将板料相变潜热释放引入温度场分析过程中。以典型U型试件为例, 对其热成形过程进行数值模拟分析, 并与实际试验进行对比研究。结果表明:板料与三维实体模具温度变化的数值模拟结果与试验结果一致, 该模块对于热成形温度场分析预测具有重要指导意义。

关键词: 车辆工程, 高强度钢板, 热成形, 温度场, 数值模拟

Abstract: Based on the finite element theory for 3D temperature field, a temperature field analysis module, King Mesh Analysis System_Hot Forming (KMAS_HF), was developed. In this module the blank and tools were modeled by shell and 3D tetrahedral elements respectively. During the numerical simulation, the boundary conditions of the sheet metal and water-cooled tools in practical hot forming process were considered; the transformation latent heat release of the blank was introduced into the analysis of the temperature field. The hot forming process of a typical U-shaped part simulated using KMAS_HF was compared with experiment. The numerical simulation result is in good agreement with the experimental result, which confirms that this module can accurately predict the temperature distribution in hot forming process.

Key words: vehicle engineering, high strength steel, hot forming, temperature field, numerical simulation

中图分类号: 

  • U41
[1] 马宁, 胡平, 闫康康. 高强度硼钢热成形技术研究及其应用[J].机械工程学报, 2010, 46(14):68-72. Ma Ning, Hu Ping, Yan Kang-kang. Research on boron steel for hot forming and its application[J]. Journal of Mechanical Engineering, 2010, 46(14): 68-72.
[2] Bergman G, Oldenburg M. A finite element model for thermo-mechanical analysis of sheet-metal forming[J]. International Journal for Numerical Methods in Engineering, 2004, 59(9): 1167-1186.
[3] Åkerström P, Bergman G, Oldenburg M. Numerical implementation of a constitutive modelfor simulation of hot stamping[J]. Materials Science and Engineering, 2007, 15(2): 105-119.
[4] Naderi Malek, Uthaisangsuk Vitoon, Prahl Ulrich, et al. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels[J]. Steel Research International, 2008, 79(2): 77-84.
[5] Hoffmann H, So H, Steinbeiss H I. Design of hot stamping tools with cooling system[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 269-272.
[6] 姜大鑫, 武文华, 胡平. 高强度钢板热成形热、力、相变数值模拟分析[J]. 机械工程学报, 2012, 48(12): 18-23. Jiang Da-xin, Wu Wen-hua, Hu Ping. Thermo-mechanical-martensitic transformation numerical simulation of high strength steel in hot forming[J]. Journal of Mechanical Engineering, 2012, 48(12): 18-23.
[7] Shepel Sergey V, Paolucci Samuel. Numerical simulation of filling and solidification of permanent mold castings[J]. Applied Thermal Engineering, 2002, 22(2): 229-248.
[8] 马宁, 胡平, 郭威. 热成形硼钢热、力及相变耦合关系[J].材料热处理学报, 2010, 31(11):33-40. Ma Ning, Hu Ping, Guo Wei. Experiments and analysis of relations among heat, stress and transformation of boron steel for hot forming[J]. Transactions of Materials and Heat Treatment, 2010, 31(11): 33-40.
[9] 王勖成, 唐永进.一般壳体温度场的有限元分析[J].清华大学学报, 1989, 29(5):103-112. Wang Xu-cheng, Tang Yong-jin. Finite element analysis of temperature field in general shells[J]. Journal of Tsinghua University, 1989, 29(5): 103-112.
[10] 曾攀. 有限元分析与应用[M]. 北京:清华大学出版社, 2004.
[11] Kobayashi Shirō, Oh Soo-Ik. Metal Forming and the Finite Element Method[M]. Oxford: Oxford University Press, 1989.
[12] Sören Sjöström. The calculation of quench stresses in steel[D]. Sweden: Linköping University, 1982.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[15] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!