吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1550-1556.doi: 10.13229/j.cnki.jdxbgxb201406003

• 论文 • 上一篇    下一篇

车内低频噪声声固耦合及试验优化设计

陈书明, 彭登志, 王登峰, 梁杰   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2013-07-11 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 王登峰(1963-),男,教授,博士生导师.研究方向:汽车NVH性能分析与控制.E-mail:caewdf@jlu.edu.cn
  • 作者简介:陈书明(1980-),男,副教授,博士.研究方向:汽车NVH性能分析与控制.E-mail:
  • 基金资助:

    国家自然科学基金项目(51205152); 吉林省春苗人才计划项目; 中国博士后科学基金特别资助项目(2013T60322); 高等学校博士学科点专项科研基金项目(20120061120036)

Structural-acoustic coupling and optimal experimental design for automotive interior low frequency noise

CHEN Shu-ming, PENG Deng-zhi, WANG Deng-feng, LIANG Jie   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2013-07-11 Online:2014-11-01 Published:2014-11-01

摘要:

利用某国产轿车的声固耦合有限元模型对车内低频噪声进行了预测、分析和优化,并通过实车道路试验得到动力总成悬置激励、路面通过悬架传递到车身的激励以及驾驶员耳旁声压级响应。将测得的激励施加于模型中的相应位置进行频率响应分析,并预测车内低频噪声。从预测结果与试验结果的对比可以看出,二者具有较好的一致性,证明了轿车声固耦合模型的有效性。分析了驾驶员耳旁声压级对车身结构各壁板的灵敏度,根据灵敏度分析结果,应用涂贴阻尼层的方法对车内噪声进行控制,通过对阻尼层的试验优化设计,优化了涂贴阻尼层的密度及厚度。优化后车内噪声峰值降低了1.13 dB(A),总声压级降低了0.62 dB(A),阻尼层的总质量降低了1.935 kg。

关键词: 车辆工程, 低频噪声, 声固耦合, 灵敏度分析, 试验优化设计

Abstract:

To predict, analyze and optimize the low frequency noise of a Chinese vehicle, a structural- acoustic coupling finite element model was established. The excitation signals at the suspension mountings and engine mountings, and the responding signal of the interior noise were measured with road testing. Appling the excitation signals to the structural-acoustic coupling model, the frequency response analysis was carried out and the low frequency noise was calculated. The simulation response of noise was compared with the result of testing. The consistency between the simulation and testing results proved the validity of the model. The driver's noise sensitivity on the thickness of each panel of the vehicle was calculated. According to the results of the sensitivity analysis, the damping layer was aligned to the structure to control the noise. The density and thickness of the damping layer were optimized by optimal experimental design. With the optimized damping layer, the peak value of the interior noise was reduced by 1.13 dB(A) and the overall sound level was reduced by 0.62 dB(A), the total mass of the damping layer was reduced by 1.953 kg.

Key words: vehicle engineering, low frequency noise, structural-acoustic coupling, sensitivity analysis, design of experiment (DOE)

中图分类号: 

  • U467.4
[1] 靳晓雄, 张立军. 汽车噪声的预测与控制[M]. 上海:同济大学出版社, 2004.
[2] 常振臣,王登峰,郑联珠,等.车内噪声主动控制系统设计与试验研究[J].公路交通科技,2003,20(6): 150-153. Chang Zhen-chen, Wang Deng-feng, Zheng Lian-zhu, et al. The design and experiment research of active noise control system in vehicle[J]. Journal of Highway and Transportation Research and Development, 2003,20(6):150-153.
[3] Kavarana F, Schroeder A. A practical CAE approach to determine acoustic cavity modes for vehicle NVH development[C]∥SAE Technical Papers, 2012-01-1184.
[4] Surkutwar Y, Patel K, Amara S, et al. The application of the simulation techniques to predict and reduce the interior noise in bus development[C]∥SAE Paper, 2012-01-0219.
[5] Sung S, Chao S, Lingala H, et al. Structural acoustic analysis of vehicle body panel participation to interior acoustic boom noise[C]∥SAE Paper, 2011-01-0496.
[6] Wu Guang-ming, Shi Wen-ku, Yang Wei, et al. Structure optimization and interior noise reduction of commercial vehicle cab[C]∥SAE Paper, 2012-01-1928.
[7] 韩志明. 车内噪声预测分析与阻尼层结构拓扑优化[D]. 重庆:重庆大学机械工程学院,2012. Han Zhi-ming. The interior noise prediction analysis and topology optimization of damping structural in auto-body[D]. Chongqing: College of Mechanical Engineering, Chongqing University,2012.
[8] 臧献国,于德介,姚凌云,等. 基于模态振型的自由阻尼层厚度分布优化[J]. 中国机械工程,2010,21(5):515-519. Zang Xian-guo,Yu De-jie,Yao Ling-yun,et al. Optimization of thickness distribution of unconstrained damping layer based on mode shapes[J]. Mechanic Engineering of China,2010,21(5):515-519.
[9] 赵冠军,刘更,吴立言. 汽车驾驶室声固耦合系统的灵敏度分析[J]. 机械设计,2008,25(1):53-55. Zhao Guan-jun, Liu Geng, Wu Li-yan. Sensitivity analysis on the sound-structure-coupling system of car cab[J]. Journal of Machine Design,2008,25(1):53-55.
[10] 尹岗. 运载工具腔体低频声场理论预估及优化方法的研究[D]. 西安:西安交通大学机械工程学院,2000. Yin Gang. Research on theoretical prediction and optimization of the delivery vehicle cavity low frequency field[D]. Xi'an: College of Mechanical Engineering,Xi'an Jiaotong University, 2000.
[11] 吴光强,盛云,方园. 基于声学灵敏度的汽车噪声声固耦合有限元分析[J]. 机械工程学报,2009,45(3)222-228. Wu Guang-qiang, Sheng Yun, Fang Yuan. Coupled acoustic-structural finite element analysis of vehicle interior noise based on acoustic sensitivity[J]. Journal of Mechanical Engineering, 2009,45(3):222-228.
[12] 于洋. 微型客车车身低频声振特性的分析与控制[D]. 长春:吉林大学汽车工程学院,2012. Yu Yang. Analysis and control of vibra-acoustic characteristics of mini-car body structure in low frequency range[D]. Changchun: College of Automotive Engineering, Jilin University,2012.
[13] 梁新华.汽车车身薄壁件阻尼复合结构振动-声学分析与优化[D]. 上海:上海交通大学机械与动力工程学院,2007. Liang Xin-hua. Vibro-acoustic analysis and optimization of damping panel in auto-body[D]. Shanghai: School of Mechanical Engineering, Shanghai Jiao Tong University,2007.
[14] 何为,薛卫东,唐斌. 优化实验设计方法及数据分析[M].北京:化学工业出版社,2012.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!