吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 508-515.doi: 10.13229/j.cnki.jdxbgxb201502026

• 论文 • 上一篇    下一篇

鸵鸟二趾足底曲面固沙限流特性数值模拟

张锐1,杨明明1,刘海宝1,曾桂银1,潘润铎2,李建桥1   

  1. 1.吉林大学 工程仿生教育部重点实验室,长春 130022;
    2.吉林大学第一医院 放射线科,长春 130021
  • 收稿日期:2013-12-20 出版日期:2015-04-01 发布日期:2015-04-01
  • 作者简介:张锐(1975),男,教授,博士.研究方向:松软地面仿生行走及数值计算.E-mail:zhangrui@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51275199);吉林省科技发展计划项目(20140101074JC);吉林大学工程仿生教育部重点实验室开放基金项目(K201412);2014年吉林大学“挑战杯”大学生课外学术科技作品竞赛项目(450060507042).

Numerical simulation of sand flow fixation characteristics of plantar surface of ostrich didactyl foot

ZHANG Rui1, YANG Ming-ming1, LIU Hai-bao1, ZENG Gui-yin1, PAN Run-duo2, LI Jian-qiao1   

  1. 1.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022,China;
    2.Department of Radiology, the First Hospital, Jilin University, Changchun 130021,China
  • Received:2013-12-20 Online:2015-04-01 Published:2015-04-01

摘要: 采用逆向工程技术,完成了鸵鸟足底曲面三维重构和分区,基于离散元法和有限元法,进行了鸵鸟足底曲面/沙土相互作用数值模拟。鸵鸟足底曲面下沙土颗粒流动程度沿足宽方向大于沿足长方向,表明鸵鸟足底曲面形貌更好地减缓了鸵鸟足在沙地上的前行滑移程度。在鸵鸟足多曲面结合形貌中,第Ⅲ趾底中间凹槽面固沙限流效果最好,此区域的沙土颗粒群受力呈现网格状稳态紧固分布。鸵鸟足第Ⅲ趾底中间凹槽面数学模型的建立,为鸵鸟足底曲面仿生设计提供了重要理论依据。

关键词: 工程仿生学, 鸵鸟二趾足, 足底曲面形貌, 固沙限流, 数值模拟

Abstract: 3D model reconstruction and partition of the plantar surface of ostrich didactyl foot were achieved using reverse engineering. Discrete element method and finite element method were employed to simulate the interactions between the plantar surface of ostrich didactyl foot and sand. It was shown that the flowing extent of sand particles under the plantar surface along the foot breadth direction was greater than that along the foot length direction. This may indicate that the plantar surface morphology of ostrich foot can preferably retard the slippage during ostrich foot moving ahead on sand. Within the plantar surface of ostrich foot, the middle groove in the third toe plantar surface has most obvious effect of sand flow fixation, under which the forces on the sand particle groups present the grid-patterned stable tight distribution. A mathematical model of the middle groove in the third toe plantar surface was established, which may provide theoretical reference for bionic design of the plantar surface of ostrich foot.

Key words: bionic engineering, didactyl foot of ostrich, plantar surface morphology, sand flow fixation, numerical simulation

中图分类号: 

  • TB17
[1] 谢懿. “勇气”号轶事[J]. 太空探索,2012(8):48-49.
Xie Yi. The anecdote of “Spirit Rover”[J]. Space Exploration, 2012 (8):48-49.
[2] Wong J Y. Advances and challenges in terrain-vehicle systems - presidential address[C]∥Proceedings of the 15th International Conference of International Society for Terrain-Vehicle Systems (ISTVS),Hayama, Japan, 2005.
[3] 任露泉,佟金,李建桥,等. 松软地面机械仿生理论与技术[J].农业机械学报,2000,31(1):5-9.
Ren Lu-quan,Tong Jin, Li Jian-qiao, et al. Soft ground mechanical bionic theory and technology[J]. Journal of Agricultural Machinery, 2000, 31(1):5-9.
[4] 柏龙,葛文杰,陈晓红,等. 星面探测仿生间歇式跳跃机器人设计及实现[J]. 机器人,2012(1): 32-37.
Bai Long, Ge Wen-jie, Chen Xiao-hong, et al. Design and implementation of a bio-inspired intermittent hopping robot for planetary surface exploration[J]. Robot, 2012(1): 32-37.
[5] 王志浩,裘熙定,季学武. 驼足与沙地相互作用的研究[J]. 吉林工业大学学报,1995,25(2):1-7.
Wang Zhi-hao,Qiu Xi-ding,Ji Xue-wu. The study of the interaction between camel foot and sand[J]. Journal of Jilin University of Technology, 1995, 25(2): 1-7.
[6] 李杰,庄继德,裘熙定,等. 仿驼足车辆行走机构的设计与试验[J]. 中国机械工程,1999,19(6):676-679.
Li Jie, Zhuang Ji-de, Qiu Xi-ding, et al. Imitation of camel foot vehicles and test in the design of traveling mechanism[J]. The Chinese Mechanical Engineering, 1999, 19(6): 676-679.
[7] 李杰,庄继德,魏东,等. 沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J]. 吉林大学学报:工学版,2006,36(4):510-513.
Li Jie, Zhuang Ji-de, Wei Dong, et al.Comparative traction performance tests betweenbionic camel foot tire and common tire[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(4): 510-513.
[8] Daniel Goldman, Haldun Komsuoglu, Daniel Koditschek. March of the sandbots-a new generation of legged robots will navigate the world's trickiest terrain[J]. IEEE Spectrum, 2009,46(4):30-35.
[9] Li C, Umbanhowar P B, Komsuoglu H, et al. The effect of limb kinematics on the speed of a legged robot on granular media[J]. Experimental Mechanics, 2010,50(9):1383-1393.
[10] Jindrich D L,Smith N C,Jespers K,et al.Mechanics of cutting maneuvers by ostriches(Struthio camelus)[J].The Journal of Experimental Biology,2007,210(8):1378-1390.
[11] Rubenson J, Lloyd D G, Heliams D B, et al. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics[J]. Journal of the Royal Society Interface, 2011,8(58):740-755.
[12] Schaller N U. Structural attributes contributing to locomotor performance in the ostrich (Struthio camelus)[D].The Natural Sciences amd Mathematics College of the Ruperto-Carola Journal of Heidelberg,Germany, 2008.
[13] 张玉光,李志恒,田晓阳. 鸟类后肢骨骼组合的长度比例及其机理初步分析[J]. 四川动物,2008, 27(4):497-505.
Zhang Yu-guang, Li Zhi-heng,Tian Xiao-yang. Length ratio and elementary mechanism analysis of combination of avian hindlimbs[J]. Animal of SiChuan, 2008, 27(4): 497-505.
[14] Baciadonna L, Zucca P, Tommasi L. Posture in ovo as a precursor of footedness in ostriches (Struthio camelus)[J]. Behavioural Processes, 2010, 83 (1): 130-133.
[15] Schaller N U, D'Aot K, Villa R, et al. Toe function and dynamic pressure distribution in ostrich locomotion[J]. The Journal of Experimental Biology,2011,214(7):1123-1130.
[16] Zhang Rui, Zhang Si-hua, Li Xiu-juan, et al. Relationship between foot structure morphology and ostrich traveling ability on sand[C]∥Proceedings of International Bionic Engineering Conference, Boston, USA (CD),2011.
[17] El-Gendy S A A, Derbalah Amira, Abu El-Magd M E R. Histo-morphological study on the footpad of ostrich (Struthio camelus) in relation to locomotion[J].J Vet Anat, 2011, 4(2): 77-97.
[18] Zhang Rui. Analysis in the load-supporting mechanism of ostrich(struthio camelus) didactyl foot at the static standing stance[J]. Journal of Investigative Medicine, 2013, 61(4): S19.
[19] 赵旗,徐颖,李杰,等. 车辆行驶工况下的沙漠沙本构特性模型的建立[J]. 吉林大学学报:工学版,2003,33(1):42-45.
Zhao Qi, Xu Ying, Li Jie, et al. Models for describing the constitutive relationship of taklimakan desert sand under moving vehicle [J]. Journal of Jilin University (Engineering and Technology Edition),2003, 33(1): 42-45.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[5] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[7] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[8] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[9] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[10] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[11] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[12] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[13] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[14] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[15] 谷诤巍, 吕萌萌, 张文学, 雷娇娇, 徐虹. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!