吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1737-1742.doi: 10.13229/j.cnki.jdxbgxb201506001

• 论文 •    下一篇

基于无源理论的线控转向汽车稳定性控制

何磊1, 马伯祥2, 郑宏宇1, 王祥3   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.中国第一汽车股份有限公司 技术中心,长春 130011;
    3.广州汽车集团股份有限公司 汽车工程研究院,广州 511434
  • 收稿日期:2014-05-19 出版日期:2015-11-01 发布日期:2015-11-01
  • 通讯作者: 郑宏宇(1980-),男,副教授,博士.研究方向:汽车底盘控制.E-mail:zheng.hongyu@ascl.jlu.edu.cn
  • 作者简介:何磊(1982-),男,讲师,博士.研究方向:汽车底盘控制.E-mail:jlu_helei@126.com
  • 基金资助:

    国家自然科学基金项目(51505179,51505178,51575223)

Stability control of steering-by-wire vehicle based on passive theory

HE Lei1, MA Bo-xiang2, ZHENG Hong-yu1, WANG Xiang3   

  1. 1.State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, China;
    2.R&D Center, China FAW Co., Ltd, Changchun 130011, China;
    3.Automobile Engineering Institute, Guangzhou Automobile Group Co., Ltd, Guangzhou 511434, China
  • Received:2014-05-19 Online:2015-11-01 Published:2015-11-01

摘要:

为了解决线控转向系统受传感器精度及信号噪声等因素影响引起的系统控制失稳问题,利用无源理论,从能量角度分析系统,设计了无源控制器,保证了线控转向系统的控制稳定性。以机械转向系统的无源性分析为基础,对线控转向系统进行无源性分析。确定线控转向系统易呈现有源状态的部分,针对该部分设计无源控制器,保证其无源性,完成系统的稳定性控制,并通过实车试验对方法的有效性进行验证,结果表明:利用无源理论设计的无源控制器能够保证线控转向系统控制的稳定性。

关键词: 车辆工程, 线控转向, 稳定性控制, 无源控制器

Abstract:

A passive controller is developed to solve the problem of instability of steering-by-wire system caused by the inaccuracy of sensor and signal noise. The passive controller is designed with the analysis of the steering-by-wire system from the aspect of energy based on passive theory, thus ensuring the control stability of the system. The passivity of the steering-by-wire system is analyzed based on passivity analysis of mechanical steering system. The part of the steering-by-wire system that is easy to show the active state is confirmed, and the passive controller is designed to ensure its passivity, thus achieving the stability control of the system. The method is verified through real vehicle test. The results show that the passive controller designed based on passive theory can guarantee the control stability of the steering-by-wire system.

Key words: vehicle engineering, steering-by-wire, stability control, passive controller

中图分类号: 

  • U463.4
[1] Im J S, Ozaki F, Matsushita T, et al. Experiment study on steer-by-wire system with bilateral control[C]∥Proceedings of International Conference on Mechatronics,Kumamoto,2007:1-6.
[2] Raju G. Design issue in 2-port networks models of bilateral remote manipulation[J]. IEEE Transaction on Automatic Control,1989,34(3):1316-1321.
[3] Xi N, Tarn T J. Action synchronization and control of internet based telerobotic systems[C]∥Proceedings of 1999 IEEE International Conference on Robotics and Automation,Detroit MI,1999:219-224.
[4] Chopra N, Spong M W, Hirche S, et al. Bilateral teleoperation over the internet: The time varying delay problem[C]∥Proceedings of the 2003 American Control Conference,Denver,CO,2003:155-160.
[5] Li H J, Song A G. Virtual-environment modeling and correction for force-reflecting teleoperation with time delay[J]. IEEE Transactions on Industrial Electronics,2007,54(2):1227-1233.
[6] Wang Xiang, Zong Chang-fu, Xing Hai-tao, et al. Bilateral control method of torque drive/angle feedback used for steer-by-wire system[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems,2012,5(2):479-485.
[7] 邢海涛.汽车线控转向系统补偿控制方法研究和验证[D].长春:吉林大学汽车工程学院,2013.
Xing Hai-tao. Research on compensation control method for vehicle steer-by-wire system[D]. Changchun:College of Automotive Engineering, Jilin University,2013.
[8] 宗长富,郑宏宇,田承伟,等.线控转向稳态增益与动态增益反馈校正控制算法[J].汽车工程,2007,29(8):686-691.
Zong Chang-fu, Zheng Hong-yu, Tian Cheng-wei, et al. Steady-state gain and dynamic feedback correction algorithm for steer-by-wire[J]. Automotive Engineering,2007,29(8):686-691.
[9] Lee D J, Li P Y. Passive bilateral feedforward control of linear dynamically similar teleoperated manipulators[J]. IEEE Transactions on Robotics and Automation,2003,19(3):443-456.
[10] Matsunaga N, Im J, Kawaji S. Control of steering-by-wire system of electric vehicle using bilateral control designed by passivity approach[J]. Journal of System Design and Dynamics,2010,4(1):50-60.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!