吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1163-1174.doi: 10.13229/j.cnki.jdxbgxb201604023

• 论文 • 上一篇    下一篇

制动盘材料和结构对滑动摩擦系统热弹性失稳的影响

夏德茂1, 奚鹰1, 华滨滨1, 周亚红1, 左建勇2   

  1. 1.同济大学 机械与能源工程学院,上海 201804;
    2.同济大学 铁道与城市轨道交通研究院,上海 201804
  • 收稿日期:2015-01-30 出版日期:2016-07-20 发布日期:2016-07-20
  • 通讯作者: 奚鹰(1957-),男,教授,博士生导师.研究方向:大型复杂机械系统关键技术及理论.E-mail:yingxi@tongji.edu.cn
  • 作者简介:夏德茂(1986-),男,博士研究生.研究方向:摩擦制动器热力耦合及理论.E-mail:xiademaonihao@163.com
  • 基金资助:
    国家留学基金项目(201406260074); 国家自然科学基金项目(61004077)

Effect of geometry and material properties of brake disc on thermoelastic instability of sliding frictional system

XIA De-mao1, XI Ying1, HUA Bin-bin1, ZHOU Ya-hong1, ZUO Jian-yong2   

  1. 1.School of Mechanical Engineering, Tongji University, Shanghai 201804,China;
    2.Institute of Railway and Urban Mass Transit, Tongji University, Shanghai 201804, China
  • Received:2015-01-30 Online:2016-07-20 Published:2016-07-20

摘要: 建立了滑动摩擦系统热弹性失稳的数学模型,并推导了不同热点模式对应的临界速度表达式。分析了摩擦副的厚度和滑动层材料的热物理特性参数对摩擦系统热弹性失稳的影响。结果表明:滑动摩擦系统更易出现反对称分布的热点模式;增加摩擦层厚度,减小滑动层厚度、热传导系数、弹性模量以及热膨胀系数均可以提高标志滑动摩擦系统进入热弹性失稳状态所需的最低临界速度,而滑动层比热容对系统的稳定性几乎没有影响。

关键词: 机械设计, 扰动增长系数, 热弹性失稳, 最低临界速度, 扰动频率, 热点

Abstract: First, a mathematical model related to the thermoelastic instability was established, and the critical speeds of two different types of distribution of hot spots were derived. Then the effects of the thickness of the brake pair and thermal-physical properties of the sliding layer on the stability of the sliding frictional systems were analyzed and compared. Results show that, the sliding frictional system is more vulnerable to have dissymmetrical mode of hot spots. The minimum critical speed, which denotes the threshold of thermoelastic instability of the sliding frictional system, can be enhanced by increasing the thickness of the frictional layer and decreasing thickness, thermal conductivity, thermal expansion coefficient and elastic modulus of the sliding layer. However, the specific heat of the sliding layer almost has no influence on the stability of the sliding frictional system.

Key words: mechanical design, growth rate of perturbation, thermoelastic instability, minimum critical speed, wave number, hot spot

中图分类号: 

  • TH117
[1] 孟德建, 张立军, 阮丞, 等. 摩擦引起的制动器热点问题综述[J]. 同济大学学报:自然科学版, 2014, 42(8):1203-1210.
Meng De-jian, Zhang Li-jun, Ruan Cheng, et al. Literature survey of friction-induced hot spots in brakes[J]. Journal of Tongji University(Natural Science), 2014, 42(8):1203-1210.
[2] Du S. Thermoelastic effects in automotive brakes[D]. Ann Arbor: University of Michigan, 1997.
[3] Al-Shabibi A M. Transient solution of a thermoelastic instability problem using a reduced order model[D]. Ann Arbor: University of Michigan, 2002.
[4] Davis C L, Krousgrill C M, Sadeghi F. Effect of temperature on thermoelastic instability in thin disks[J]. ASME J Tribol, 2002, 124(3): 429-437.
[5] Joachim-Ajao D, Barber J R. Effect of material properties in certain thermoelastic contact problems[J]. J Appl Mech-T,1998,65(4): 889-893.
[6] Liu Y, Jang Y H, Barber J R. Finite element implementation of an eigenfunction solution for the contact pressure variation due to wear[J]. Wear, 2014, 309(1): 134-138.
[7] Dow R A, Burton R A. Thermoelastic instability of sliding contact in the absence of wear[J]. Wear, 1972, 19(3): 315-328.
[8] Burton R A, Nerlikar V, Kilaparti S R. Thermoelastic instability in a seal-like configuration[J]. Wear, 1973, 24(2): 177-188.
[9] Dow T A. Thermoelastic effects in brakes[J]. Wear, 1980, 59(1): 213-221.
[10] Lee K, Barber J R. An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application[J]. ASME J Tribol, 1994, 116(3): 409-414.
[11] Byon C, Choo K, Kim S J. Experimental and analytical study on chip hot spot temperature[J]. Int J Heat Mass Transfer, 2011, 54(9): 2066-2072.
[12] Lee K. Frictionally-excited thermoelastic instability in automotive disk brakes[D]. Ann Arbor: University of Michigan, 1993.
[13] Lee K, Barber J R. Frictionally excited thermoelastic instability in automotive disk brakes[J]. ASME J Tribol, 1993, 115(4): 607-614.
[14] Du S, Zagrodzki P, Barber J R, et al. Finite element analysis of frictionally excited thermoelastic instability[J]. J Therm Stresses, 1997, 20(2): 185-201.
[15] Yi Y B, Barber J R, Zagrodzki P. Eigenvalue solution of thermoelastic instability problems using Fourier reduction[J]. Proc Roy Soc, 2000,456(2003):2799-2821.
[16] Lee K. Frictionally excited thermoelastic instability in automotive drum brakes[J]. ASME J Tribol, 2000, 122(4): 849-855.
[17] Ayala J R R, Lee K, Rahman M, et al. Effect of intermittent contact on the stability of thermoelastic sliding contact[J]. ASME J Tribol, 1996, 118(1): 102-108.
[18] Hartsock D L, Fash J W. Effect of pad/caliper stiffness, pad thickness, and pad length on thermoelastic instability in disk brakes[J]. ASME J Tribol, 2000, 122(3): 511-518.
[19] Geijselaers H J M, Koning A J E. Finite element analysis of thermoelastic instability with intermittent contact[J]. ASME J Tribol, 2000, 122(1): 42-46.
[20] Painer S, Dufrénoy P, Weichert D. An experimental investigation of hot spots in railway disc brakes[J]. Wear, 2004, 256(7): 764-773.
[21] Majcherczak D, Dufrénoy P, Berthier Y. Tribological, thermal and mechanical coupling aspects of the dry sliding contact[J]. Tribol Int, 2007, 40(5): 8340-8343.
[22] Kasem H, Brunel J F, Dufrénoy P, et al. Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking[J]. Wear, 2011, 270(5): 355-364.
[23] Kumar M, Boidin X, Desplanques Y, et al. Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking[J]. Wear, 2011, 270(5): 371-381.
[24] Green A E, Zerna W. Theoretical Elasticity[M]. Oxford: Oxford University Press,1968.
[25] Yi Y B, Bendawi A. Effect of convective cooling on frictionally excited thermoelastic instability[J]. Wear, 2012, 296(1): 583-589.
[26] 夏德茂, 奚鹰, 华滨滨, 等. RZS盘式制动器制动倍率的研究(续)[J]. 中国机械工程, 2015, 26(16):2244-2248.
Xia De-mao,Xi Ying,Hua Bin-bin, et al. Study on braking rate of disc brake unit RZS(Continue)[J]. China Mechanical Engineering, 2015, 26(16):2244-2248.
[27] 夏德茂,奚鹰,朱文翔,等. 二维轴对称摩擦制动器瞬态热弹性失稳的研究[J]. 机械工程学报,2015,51(20):144-155.
Xia De-mao, Xi Ying, Zhu Wen-xiang, et al. Transient frictionally excited thermoelastic instability analysis of two dimensional axisymmetric friction brake[J]. Journal of Mechanical Engineering, 2015, 51(20): 144-155.
[28] 马彪,赵家昕,李和言,等. 离合器结构参数对其热弹性不稳定性的影响[J]. 吉林大学学报:工学版, 2014, 44(4):933-938.
Ma Biao, Zhao Jia-xin, Li He-yan, et al. Effect of clutches' structural parameters on thermoelastic instability[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 933-938.
[29] Decuzzi P, Demelio G. The effect of material properties on the thermoelastic stability of sliding systems[J]. Wear, 2002, 252(3): 311-321.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[15] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .