吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 89-97.doi: 10.13229/j.cnki.jdxbgxb20161255

• 论文 • 上一篇    下一篇

信号交叉口自行车和行人混合交通流社会力模型

王占中, 赵利英, 焦玉玲, 曹宁博   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2016-12-12 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 焦玉玲(1968-),女,副教授.研究方向:物流系统设施设备规划与设计.E-mail: jyling777@163.com
  • 作者简介:王占中(1965-),男,教授,博士生导师.研究方向:运输资源优化技术.E-mail: wangzz@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51578262)

Social force model of pedestrian-bike mixed flow at signalized crosswalk

WANG Zhan-zhong, ZHAO Li-ying, JIAO Yu-Ling, CAO Ning-bo   

  1. College of Transportation, Jilin University, Changchun, 130022, China
  • Received:2016-12-12 Online:2018-02-26 Published:2018-02-26

摘要: 基于行人仿真的社会力模型,考虑自行车对行人过街的干扰,引入自行车与行人以及自行车与人行横道间的相互作用,提出了一种改进的自行车和行人混合交通流的社会力模型。通过数值模拟,分析了自行车道的设置对混合交通流事故数及到达率的影响,再现了自行车和行人混合交通流中自行车的跟随和分层现象。仿真结果表明:设置自行车道能够有效缓解行人和自行车之间的冲突,有助于减少行人和自行车的事故数并提高混合交通流的运行效率;根据自行车数量,设置合理的自行车道,能够保证自行车达到最大过街速度,从而提高自行车的过街效率;模型能够重现混合交通流的自组织等现象。

关键词: 交通运输系统工程, 社会力模型, 自行车, 行人, 混合交通

Abstract: Based on basic social force model, considering the interference of bikes on pedestrian, this paper presents a modified social force model to describe the interactions between bikes and pedestrians. By simulation, the influences of the setting cyclists' path on the number of pedestrians and bicycle accidents and the arrival rate of bicycles were analyzed; and then, the slipstreaming, self-organization and lane-forming of bicycle and pedestrian mixed flow were reproduced, which obeys the observed data. The simulation results show that setting of cyclists' path can effectively alleviate the conflicts of bicycles and pedestrians, and help to reduce the number of potential traffic accidents of pedestrian and bicycle mixed flow, thus, improving the operation efficiency of the mixed traffic flow. Comparison of the simulation results and the observed data proves the effectiveness of the modified model. Besides, conclusions are drawn that with the increase of bicycle traffic, setting the cyclists' path on the crosswalk becomes more beneficial. Furthermore, setting wider cyclists' path according to the bicycle volume can guarantee bicycles to cross the crosswalk with maximum speed. The simulation model enables us to visually represent pedestrian and cyclist collective phenomenon.

Key words: engineering of communications and transportation system, social force model, bike, pedestrian, mixed traffic flow

中图分类号: 

  • U491
[1] Papadimitriou E, Yannis G, Golias J.A critical assessment of pedestrianbehavior models[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2009, 12(3): 242-255.
[2] Helbing D, Molnar P.Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51(5): 4282.
[3] Helbing D, Farkas I, Vicsek T.Simulating dynamical features of escape panic[J]. Nature, 2000, 407(6803): 487-490.
[4] Helbing D, Farkas I J, Molnar P, et al.Simulation of pedestrian crowds in normal and evacuation situations[J]. Pedestrian and Evacuation Dynamics, 2002, 21(2): 21-58.
[5] Helbing D, Buzna L, Johansson A, et al.Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions[J]. Transportation Science, 2005, 39(1): 1-24.
[6] Apel M.Simulation of pedestrian flows based on the social force model using theverlet link cell algorithm [D]. The Republic of Poland:Institute of Computing Science,Poznan University of Technology,2004.
[7] Johansson A.Pedestrian simulations with the social force model [D].Dresden, Germany: Institute for Transport & Economics, Dresden University of Technology, 2004.
[8] Moussaïd M, Helbing D, Garnier S, et al.Experimental study of the behavioural mechanisms underlying self-organization in human crowds[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2009: 276(1668): 2755-2762.
[9] Zeng W, Chen P, Nakamura H, et al.Application of social force model to pedestrian behavior analysis at signalized crosswalk[J]. Transportation Research Part C: Emerging Technologies, 2014, 40: 143-159.
[10] Li M, Shi F, Chen D.Analyze bicycle-car mixed flow by social force model for collision risk evaluation[C]∥The 3rd International Conference on Road Safety and Simulation, Washington, DC,USA,2011:1-22.
[11] 江晟, 王殿海, 陈永恒, 等. 基于视频的行人运动轨迹再现与过街行为表达[J]. 东南大学学报: 自然科学版, 2012, 42(6): 1233-1237.
Jiang Sheng, Wang Dian-hai,Chen Yong-heng, et al.Pedestrian movement trajectory reappearance and crossing feature expression based on video processing[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1233-1237.
[12] 江晟. 混合交通视频检测关键技术研究 [D]. 长春:吉林大学交通学院, 2013.
Jiang Sheng.Research on key technologies of mixed traffic video detection [D]. Changchun:College of Transportation, Jilin University, 2013.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 侯现耀, 陈学武. 基于态度的公交出行信息使用市场细分[J]. 吉林大学学报(工学版), 2018, 48(1): 98 -104 .
[2] 秦大同, 詹森, 漆正刚, 陈淑江. 基于K-均值聚类算法的行驶工况构建方法[J]. 吉林大学学报(工学版), 2016, 46(2): 383 -389 .