吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 44-56.doi: 10.13229/j.cnki.jdxbgxb20170036
王登峰, 张帅, 汪勇, 陈辉
WANG Deng-feng, ZHANG Shuai, WANG Yong, CHEN Hui
摘要: 为了研究车轮的13°冲击性能,提出了一种基于疲劳和13°冲击性能的车轮结构设计和优化方法。以16×6
中图分类号:
[1] Hirano A.Study on wheel stiffness considering balance between driving stability and weight[C]∥SAE Paper,2015-01-1755 [2] Shang D, Liu X, Shan Y, et al.Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel[J]. International Journal of Fatigue, 2016, 93: 173-183. [3] Ballo F, Frizzi R, Mastinu G, et al.Lightweight design and construction of aluminum wheels[C]∥SAE Paper, 2016-01-1575. [4] Oery T, Sankaran R T, Nesarikar A S.Simulation and test correlation of wheel radial fatigue test[C]∥SAE Paper, 2013-01-1198. [5] Bendsøe M P, Kikuchi N.Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. [6] Jeong S H, Yoon G H, Takezawa A, et al.Development of a novel phase-field method for local stress-based shape and topology optimization[J]. Computers and Structures, 2014, 132(1): 84-98. [7] Liu J, Ma Y.A survey of manufacturing oriented topology optimization methods[J]. Advances in Engineering Software, 2016, 100: 161-175. [8] Deaton J D, Grandhi R V.A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38. [9] Sangree R, Carstensen J V, Gaynor A T, et al.Topology optimization as a teaching tool for undergraduate education in structural engineering[C]∥Structural Engineering Proceedings of the Structures Congress, Portland, OR,2015: 2632-2642. [10] Zhang Z J, Jia H L, Sun J Y, et al. Application of topological optimization on aluminum alloy automobile wheel designing [J].Advanced Materials Research, 2012,562-564: 705-708. [11] Hu J H,Liu X X, Sun H X, et al.Development and application of light-weight design of the aluminum alloy wheel[C]∥Applied Mechanics and Materials Trans Tech Publications, 2013, 310: 253-257. [12] Xiao D, Zhang H, Liu X, et al.Novel steel wheel design based on multi-objective topology optimization[J]. Journal of Mechanical Science and Technology, 2014, 28(3): 1007-1016. [13] 臧孟炎, 秦滔. 铝合金车轮 13°冲击试验仿真分析[J]. 机械工程学报, 2010, 46(2): 83-87. Zang Meng-yan, Qin Tao.Simulation analysis of car A-alloy wheel 13° impact test[J]. Journal of Mechanical Engineering, 2010, 46(2): 83-87. [14] 尹冀, 朱平, 章斯亮. 考虑应变率效应的钢制车轮冲击仿真与试验[J]. 上海交通大学学报, 2013, 47(6): 967-971. Yin Ji, Zhu Ping, Zhang Si-liang.Simulation and experimental study of steel wheel impact test considering strain rate effect[J]. Journal of Shanghai Jiaotong University, 2013, 47(6): 967-971. [15] Chang C L, Yang S H.Simulation of wheel impact test using finite element method[J]. Engineering Failure Analysis, 2009, 16(5): 1711-1719. [16] 郑玉卿, 刘建峰. 基于Abaqus 显式算法的铸铝车轮碰撞模拟[J]. 汽车工程, 2011, 33(2):152-155. Zheng Yu-qing, Liu Jian-feng.Impact simulation of casting aluminum wheel using Abaqus/explicit[J]. Automotive Engineering, 2011, 33(2):152-155. [17] Vinothkumar S, Srinivasan S, Nesarikar A K.Simulation and test correlation of wheel impact test[C]∥SAE Paper, 2011-28-0129. [18] 闫胜昝, 童水光, 朱训明. 轮胎充气压力对车轮应力分布影响的数值模拟[J]. 浙江大学学报:工学版, 2009, 43(3): 565-569. Yan Sheng-zan, Tong Shui-guang, Zhu Xun-ming.Numerical simulation on influence of tire pressure to stress distribution in wheel[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(3): 565-569. [19] Tsai G C, Huang K Y.13° impact test analysis of aluminum alloy wheel[C]∥Advanced Materials Research, Trans Tech Publications, 2013, 631: 925-931. [20] 张响. 铝合金车轮数字化仿真及工艺优化[D]. 浙江: 浙江大学材料与化学工程学院, 2008. Zhang Xiang.Aluminum wheel digital simulation and process optimization [D].Zhejiang: College of Materials and Chemical Engineering,Zhejiang University, 2008. [21] Chauhan M R, Kotwal G, Majge A.Numerical simulation of tire and wheel assembly impact test using finite element method[C]∥SAE Paper, 2015-26-0186. [22] 王宁, 杜林秀, 吴迪, 等. 超级钢汽车车轮强度有限元分析[J]. 东北大学学报 :自然科学版, 2006, 27(7): 779-781. Wang Ning, Du Lin-xiu, Wu Di, et al.FEM analysis of strength of automotive wheels made from ultra-fine grain steel[J]. Journal of Northeastern University (Natural science), 2006, 27(7): 779-781. [23] 畅世为, 张维刚. 复合材料车轮冲击试验仿真分析[J]. 汽车工程, 2010, 32(1): 65-68. Chang Shi-wei, Zhang Wei-gang.A simulation analysis on the impact test of composite wheel[J]. Automotive Engineering, 2010, 32(1): 65-68. [24] Tiwari D, Arora J, Khanger R.Study of parameters affecting the impact performance of an alloy wheel and noble approach followed to improve the impact performance[C]∥SAE Paper, 2015-01-1514. [25] Shang R, Altenhof W, Hu H, et al.Kinetic energy compensation of tire absence in numerical modeling of wheel impact testing[C]∥SAE Paper, 2005-01-1825. [26] Stearns J,Srivatsan T S, Prakash A, et al.Modeling the mechanical response of an aluminum alloy automotive rim[J]. Materials Science and Engineering A, 2004, 366(2): 262-268. [27] Sah S K, Bawase M A, Saraf M R.Light-weight materials and their automotive applications[C]∥SAE Paper, 2014-28-0025. [28] Ballo F, Mastinu G, Gobbi M.Lightweight design of a racing motorcycle wheel[C]∥SAE Paper, 2016-01-1576. [29] Collet M,Bruggi M, Duysinx P.Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance[J]. Structural and Multidisciplinary Optimization, 2016,55(3): 1-17. [30] Bruggi M, Duysinx P.Topology optimization for minimum weight with compliance and stress constraints[J]. Structural and Multidisciplinary Optimization, 2012, 46(3): 369-384. [31] Rozvany G I N. On symmetry and non-uniqueness in exact topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(3): 297-317. [32] 李兵. 计及复杂胎面花纹的子午线轮胎结构有限元分析[D]. 合肥: 中国科学技术大学工程科学学院, 2008. Li Bing.Finite element structural analysis for radial tires with complex tread patterns considered [D]. Hefei: School of Engineering Science, University of Science and Technology of China, 2008. [33] Yi G, Kim N H.Identifying Boundaries of Topology Optimization Results using basic Parametric Features[M]. New York: Springer, 2016: 1-14. [34] Hahn Y, Cofer J I.Study of parametric and non-parametric optimization of a rotor-bearing system[C]∥Turbine Technical Conference and Exposition,American Society of Mechanical Engineers, 2014: V07AT28A001-V07AT28A001. [35] Leifsson L, Hermannsson E, Koziel S.Optimal shape design of multi-element trawl-doors using local surrogate models[J]. Journal of Computational Science, 2015, 10: 55-62. [36] Golzari A, Sefat M H, Jamshidi S.Development of an adaptive surrogate model for production optimization[J]. Journal of Petroleum Science and Engineering, 2015, 133: 677-688. [37] Pan I, Das S.Kriging based surrogate modeling for fractional order control of microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 36-44. [38] Mehmani A, Chowdhury S, Messac A.Predictive quantification of surrogate model fidelity based on modal variations with sample density[J]. Structural and Multidisciplinary Optimization, 2015, 52(2): 353-373. |
[1] | 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635. |
[2] | 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644. |
[3] | 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652. |
[4] | 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660. |
[5] | 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668. |
[6] | 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312. |
[7] | 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323. |
[8] | 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330. |
[9] | 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338. |
[10] | 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348. |
[11] | 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359. |
[12] | 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365. |
[13] | 徐亮, 兰进, 王明森, 高建民, 李云龙. 旋度对旋转冲击射流传热特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1483-1491. |
[14] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[15] | 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983. |
|