吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 701-708.doi: 10.13229/j.cnki.jdxbgxb201703002

• • 上一篇    下一篇

可变刚度和阻尼的半主动馈能悬架隔振性能

王军年1, 叶涛2, 孙文1, 王庆年1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.新加坡国立大学 机械工程系,新加坡 117575
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 作者简介:王军年(1981-),男,副教授,博士.研究方向:汽车系统动力学,电动汽车驱动理论及关键技术.E-mail:wjn@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51205153); 吉林省自然科学基金项目(20140101072JC)

Vibration isolation performance of energy-regenerative semi-active suspension with variable stiffness and damping

WANG Jun-nian1, YE Tao2, SUN Wen1, WANG Qing-nian1   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.Department of Mechanical Engineering, National University of Singapore, Singapore 117575,Singapore
  • Online:2017-05-20 Published:2017-05-20

摘要: 首先,以单自由度1/4车辆模型为研究对象,对其地面激励和外力激励幅频特性进行分析。然后,基于天棚控制方法设计了开关阻尼控制算法,定义了9种控制模式。最后,以正弦激励和随机激励作为输入,采用Matlab/Simulink进行性能仿真对比分析,结果表明:两个阻尼器都是on-off状态对应的工作模式,可以使悬架系统表现出良好的隔振性能。

关键词: 车辆工程, 可变刚度和阻尼, 半主动悬架, 开关阻尼控制

Abstract: The vibration isolation performance of energy-regenerative semi-active suspension with variable stiffness and damping is investigated. A quarter car model with one degree of freedom with semi-active suspension model is used as the research subject. First, the magnitude frequency response characteristics of the model to road bumpiness excitation and external force excitation are analyzed. Then, a simple switch on-off damping control algorithm is designed based on the skyhook control method. Nine different on/off control modes are defined subsequently. Finally, with the input of sinusoidal function and random vibration, the control performances are simulated and compared using Matlab/Simulink. The results show that the control modes, which have on-off status for both variable dampers, lead the suspension to have excellent performance of vibration isolation.

Key words: automotive engineering, variable stiffness anddamping, semi-active suspension, on/off damping control

中图分类号: 

  • U469.7
[1] 姚嘉伶,蔡伟义,陈宁. 汽车半主动悬架系统发展状况[J]. 汽车工程,2006,28(3):276-280.
Yao Jia-ling,Cai Wei-yi, Chen Ning. A review on the development status of automotive semi-active suspension systems[J]. Automotive Engineering,2006,28(3):276-280.
[2] 王其东,梅雪晴. 汽车半主动悬架的研究现状和发展趋势[J]. 合肥工业大学学报:自然科学版,2013, 36(11):1289-1294.
Wang Qi-dong, Mei Xue-qing. Research status and development tendency of vehicle semi-active suspension[J]. Journal of Hefei University of Technology(Natural Science),2013,36(11):1289-1294.
[3] Karnopp D, Crosby M J, Harwood R A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry,1974,96(2):619-626.
[4] Krasnicki E J. The experimental performance of an “on-off” active damper[J]. Shock and Vibration Bulletin,1981,51:125-131.
[5] Youn I, Hac ' A. Semi-active suspension with adaptive capability[J]. Journal of Sound and Vibration,1995,180(3):475-492.
[6] Liu Y, Matsuhisa H, Utsuno H, et al. Controllable vibration of the car-body using magnetorheological fluid damper[J]. Vehicle System Dynamics Supplement,2004,41(4):627-636.
[7] Spelta C, Previdi F. Performance analysis of semi-active suspensions with control of variable damping and stiffness[J]. Vehicle System Dynamics,2011,49(1/2):237-256.
[8] Liu Y, MatsuhisaH,Utsuno H, et al. Vibration isolation by a variable stiffness and damping system[J]. International Journal of Japan Society of Mechanical Engineering,2005,48(2):305-310.
[9] 范方强,潘公宇. 变刚度和阻尼的半主动悬架的模糊控制研究[J]. 重庆交通大学学报:自然科学版,2012,31(3):482-485.
Fan Fang-qiang, Pan Gong-yu. Fuzzy control of semi-active suspension with variable stiffness and damping[J]. Journal of Chongqing Jiaotong University(Natural Science),2012,31(3):482-485.
[10] 靳立强,刘阅. 基于汽车平顺性的新型半主动悬架研究[J]. 科学技术与工程,2014,14(29):295-299.
Jin Li-qiang,Liu Yue. Research on a new semi-active suspension for improving ride performance[J]. Science Technology and Engineering,2014,14(29):295-299.
[11] 王军年,叶涛,孙文,等. 一种可变刚度与阻尼的汽车馈能主动悬架系统[P]. 中国:CN104015582A, 2014-09-03.
[12] 刘松山,王庆年,王伟华,等. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报:工学版,2013,43(3):557-563.
Liu Song-shan, Wang Qing-nian, Wang Wei-hua, et al. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(3):557-563.
[13] 陈杰平. 基于磁流变减振器的汽车半主动悬架设计与控制研究[D].合肥:合肥工业大学汽车与交通工程学院,2010.
Chen Jie-ping. Research on design and control of automotive semi-active suspension based on magneto-rheological damper[D]. Hefei: School of Automotive and Transportation Engineering,Hefei University of Technology, 2010.
[14] 喻凡,林逸. 汽车系统动力学[M]. 北京:机械工业出版社,2005.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!