吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1608-1616.doi: 10.13229/j.cnki.jdxbgxb20190469

• 车辆工程·机械工程 • 上一篇    

基于遗传与粒子群算法的隔振平台减振性能优化

马芳武(),韩丽,吴量(),李金杭,杨龙帆   

  1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
  • 收稿日期:2019-05-17 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 吴量 E-mail:mikema@jlu.edu.cn;astdwxg@jlu.edu.cn
  • 作者简介:马芳武(1960-),男,教授,博士生导师.研究方向:车辆智能化,电动化,轻量化.Email:mikema@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC0601604);国家自然科学基金项目(51705185);优秀青年人才基金项目(20190103056JH)

Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm

Fang-wu MA(),Li HAN,Liang WU(),Jin-hang LI,Long-fan YANG   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2019-05-17 Online:2020-09-01 Published:2020-09-16
  • Contact: Liang WU E-mail:mikema@jlu.edu.cn;astdwxg@jlu.edu.cn

摘要:

重载隔振平台主要应用于搭载高精密仪器设备,隔离复杂路面不平所产生振动与冲击,为其提供稳定的工作环境。本文以6自由度并式联隔振平台为研究对象,使用精英策略下快速非支配排序遗传算法(NSGA-Ⅱ)和多目标粒子群算法(MOPSO)对平台的减振系统进行参数优化,显著提高了其隔振性能。在多种不同路面干扰信号激励下,使用NSGA-Ⅱ和MOPSO两种方法对减振系统的阻尼和刚度参数进行优化,优化结果表明:不同激励下,平台上平面垂向加速度和垂向位移两优化目标的隔振率最高可达56.21%;此外,应用NSGA-Ⅱ对隔振平台阻尼器支撑角度参数进行优化,使两优化目标隔振率提高了7.00%;并对正弦激励情况下的仿真参数进行了实验验证,实验与仿真误差可达8.30%,验证了参数优化的有效性。

关键词: 隔振平台, 虚拟样机模型, 多目标优化, 隔振率, 多目标粒子群算法

Abstract:

Heavy-loaded Anti-Vibration Platform (AVP) is mainly used to carry high-precision instruments and equipments to isolate vibration and impact caused by uneven complex road surface, thus, providing a stable working environment. In this paper, taking the 6 DOF series AVP as the research object, the parameters of the AVP damping system are optimized by the usage of the fast elitist multi-objective genetic algorithm (NSGA_II) and multi-objective particle swarm optimization algorithm (MOPSO) to significantly improve the anti-vibration performance of AVP. The damping and stiffness parameters of the damping system are optimized by NSGA-II and MOPSO under various road surface analog signals. The optimization results show that the anti-vibration rate of the two optimization targets of vertical acceleration and vertical displacement of upper platform under different excitation can be up to 56.21%. In addition, NSGA-II is applied to optimize the damper support angle parameters of the AVP, which increases the anti-vibration rate of the two optimization targets by 7.00%. The sine excitation is verified by experiments, and the error between experiment and simulation is as small as 8.30%, thus verifying the effectiveness of optimization parameters.

Key words: anti-vibration platform, virtual prototyping, multi-objective optimization, anti-vibration rate, multi-objective particle swarm optimization algorithm

中图分类号: 

  • U463.99

图1

隔振平台结构示意图"

图2

虚拟样机模型和数学模型概念图"

图3

模型验证对比图"

图4

正弦激励"

图5

脉冲激励"

图6

阶跃激励"

图7

NSGA-Ⅱ和MOPSO算法流程图"

表1

隔振平台系统参数"

参数数值
簧上质量/kg650
簧下质量/kg300
阻尼/(N·s·m-1)1 500
空气弹簧刚度/(N·m-1)16 800
钢索弹簧刚度/(N·m-1)200 000

表2

参数变量初值及上、下限"

参数初值上限下限
DV90.4880.4390.537
DV100.9380.8441.032
DV110.4860.4370.535
DV121.0450.9411.150
DV130.4880.4390.537
DV140.9380.8441.032
DV151.0360.9321.140
DV160.4860.4370.535

表3

优化前、后变量值"

参数NSGA-II优化前
DV90.5000.480
DV101.0160.938
DV110.3920.486
DV121.1001.045
DV130.3890.488
DV141.0330.938
DV151.1281.036
DV160.3940.486

图8

优化前、后垂向加速度响应对比"

图9

优化前、后垂向位移响应对比"

表4

正弦激励下刚度和阻尼参数优化前、后参数值"

变量NSGA-IIMOPSO优化前
S11 1301 0001 500
S21 0441 0261 500
S31 0602 0001 500
S41 2471 0001 500
S51 3641 0001 500
S61 3821 0001 500
S71 0861 0001 500
S81 0781 0001 500
S910 05010 00016 800
S1010 01710 47716 800
S1110 02810 00016 800
S1210 03510 00016 800

表5

脉冲激励下刚度和阻尼参数优化前、后参数值"

变量NSGA-IIMOPSO优化前
S11 3521 3601 500
S21 1321 0851 500
S31 5741 0001 500
S41 1101 0001 500
S51 2541 0001 500
S61 4821 0001 500
S71 2431 0861 500
S81 1652 0301 500
S912 20510 16116 800
S1010 00211 15616 800
S1113 43013 48216 800
S1214 20210 59716 800

表6

阶跃激励下刚度和阻尼参数优化前、后参数值"

变量NSGA-IIMOPSO优化前
S11 0761 0001 500
S22 1401 0001 500
S31 8253 0001 500
S41 0431 0461 500
S51 7001 8101 500
S61 1401 0001 500
S71 1401 8601 500
S81 2801 0001 500
S911 70012 40016 800
S1014 00010 20016 800
S1111 00010 00016 800
S1210 40011 90016 800

图10

响应对比图"

表7

垂向加速度优化前、后对比"

项目优化前加速度/(m·s-2NSGA-IIMOPSO
加速度/(m·s-2隔振率/%加速度/(m·s-2隔振率/%
正弦1.4180.80243.440.80143.51
脉冲0.8380.70515.870.66121.12
阶跃0.8380.73811.930.73811.93

表8

垂向位移优化前、后对比"

项目优化前 位移/mmNSGA-IIMOPSO
位移/(m·s-2隔振率/%位移/(m·s-2隔振率/%
正弦8.453.7056.213.8055.00
脉冲4.103.1024.402.7034.15
阶跃8.608.006.987.7010.47

图11

实验现场和传感器布置"

图12

实验与NSGA-II优化后响应对比"

图13

时域扫频实验"

图14

频域扫频实验"

1 李耀. 六自由度隔振平台的设计与分析[D]. 南京: 南京航空航天大学机电学院, 2015.
Li Yao. Design and analysis of the six-degree-of-freedom vibration-isolation platform[D]. Nanjing: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2015.
2 Youn I, Wu L, Youn E, et al. Tomizuka: attitude motion control of the active suspension system with tracking controller[J] Internal Journal of Automotive Technology, 2015, 16(4): 593-601.
3 马芳武, 倪利伟, 吴量, 等. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报: 工学版, 2019, 49(6): 1745-1755.
Ma Fang-wu, Ni Li-wei, Wu Liang, et al. Position and attitude closed loop control of wheel⁃leggedall terrain mobile robot[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1745-1755.
4 Wu L, Khan M A, Youn E, et al. Attitude motion control of vehicle including the active passenger seat system[J]. International Journal of Vehicle Design, 2018, 78(1-4): 131-160.
5 张抗抗, 徐梁飞, 华剑锋, 等. 基于多目标优化的纯电动车动力系统参数匹配[J]. 汽车工程, 2015, 37(7): 757-765.
Zhang Kang-kang, Xu Liang-fei, Hua Jian-feng, et al. A parameter matching method for the powertrain of battery electric vehicle based on multi-objective optimization[J]. Automotive Engineering, 2015, 37(7): 757-765.
6 王庆年, 段本明, 王鹏宇, 等. 插电式混合动力汽车动力传动系参数优化[J]. 吉林大学学报: 工学版, 2017, 47(1): 1-7.
Wang Qing-nian, Duan Ben-ming, Wang Peng-yu, et al. Optimization of powertrain transmission parameters of plug in hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 1-7.
7 王咏. 高精密设备多自由度平台系统微振动混合控制研究[D]. 哈尔滨: 哈尔滨工业大学深圳研究生院, 2007.
Wang Yong. Multi-degree-of-freedom microvibration hybrid control system for high technology facilities[D]. Harbin: Harbin Institute of Technology, Shenzhen Graduate School, 2007.
8 李林, 宣明, 贾宏光, 等. 光电稳定平台隔振系统的设计与优化[J]. 计算机仿真, 2017, 34(3): 77-81.
Li Lin, Xuan Ming, Jia Hong-guang, et al. Design and optimization of vibration isolation system for photoelectric stabilized platform[J]. Computer Simulation, 2017, 34(3): 77-81.
9 谢振盛. 汽車主動式懸吊系統之最佳化控制器設計研究[D]. 台南: 昆山科技大学工程学院, 2007.
Xie Zhen-sheng. Study on optimal controllers design for automotive active suspension systems[D]. Tainan: Science and Technology, Kun Shan University of Technology, 2007.
10 Wu L, Li J H, Ma F W, et al. Optimal anti-vibration design of vehicle-mounted vibration isolation platform[C]∥ SAE Technical Paper, 2018-01-1400.
11 Deb K, Pratap A, Agarwal S, et al. A fast elitist multi-objective genetic algorithm[J]. Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
12 李杰, 车华军, 哈兰涛. 遗传算法及在汽车悬架参数优化设计中的应用[J]. 汽车技术, 2006(6): 18-21.
Li Jie, Che Hua-jun, Lan-tao Ha. The application of genetic algorithm in the optimum design automotive suspension parameter[J]. Automotive Technology, 2006(6): 18-21.
13 张勇, 巩敦卫. 先进多目标粒子群优化理论及其应用[M]. 北京: 科学出版社, 2016.
14 周红妮, 冯樱, 赵慧勇, 等. 基于ISIGHT 集成技术的某重卡双轴转向机构多目标优化[J]. 汽车研究与开发, 2015, 6(4): 26-30.
Zhou Hong-ni, Feng Ying, Zhao Hui-yong, et al. Multi-objective optimization on dual-axle steering mechanism of a heavy vehicle based on integration technology of ISIGHT[J]. Automobile Research and Development, 2015, 6(4): 26-30.
[1] 陈学深,陈涛,武涛,马旭,曾令超,陈林涛. 覆草冬种马铃薯收获机稻草分离机构设计与试验[J]. 吉林大学学报(工学版), 2020, 50(2): 749-757.
[2] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[3] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[4] 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90.
[5] 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1969-1976.
[6] 王家序,蒋倩倩,李俊阳,韩彦峰,张雷,唐挺. 双圆弧谐波传动柔轮齿形参数多目标优化设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1194-1202.
[7] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
[8] 夏利红, 邓兆祥. 电子机械制动执行器的整体最优匹配设计[J]. 吉林大学学报(工学版), 2018, 48(4): 998-1007.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[11] 王登峰, 张帅, 汪勇, 陈辉. 基于疲劳和13°冲击性能的组装式车轮优化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 44-56.
[12] 于繁华, 刘仁云, 张义民, 张晓丽, 孙秋成. 机械零部件动态可靠性稳健优化设计的群智能算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1903-1908.
[13] 周放, 宋传学, 梁天唯, 肖峰. 采用NSGA-II算法的车载复合电源参数匹配[J]. 吉林大学学报(工学版), 2017, 47(5): 1336-1343.
[14] 刘颖, 张凯, 于向军. 基于代理模型的中空轴式大型静压轴承多目标优化[J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137.
[15] 胡侃, 于野, 盈亮, 胡平, 侯文彬. 基于校车侧翻安全性的热冲压立柱结构优化设计[J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!