吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1584-1589.doi: 10.13229/j.cnki.jdxbgxb20190561

• 车辆工程·机械工程 • 上一篇    

风洞中未知声源漂移误差的逼近修正

沈哲1,2,3(),王毅刚2,3(),杨志刚1,2,3,4,贺银芝2,3   

  1. 1.同济大学 机械工程博士后流动站,上海 201804
    2.同济大学 上海地面交通工具风洞中心,上海 201804
    3.上海市地面交通工具空气动力与热环境模拟重点实验室,上海 201804
    4.北京民用飞机技术研究中心,北京 102211
  • 收稿日期:2019-06-04 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 王毅刚 E-mail:zhe.shen@sawtc.com;yigang.wang@sawtc.com
  • 作者简介:沈哲(1983-),男,博士,在站博士后.研究方向:车辆气动噪声.E-mail:zhe.shen@sawtc.com
  • 基金资助:
    上海市重点实验室项目(18DZ2273300)

Drift error correction of unknown sound source in wind tunnel using approximation method

Zhe SHEN1,2,3(),Yi-gang WANG2,3(),Zhi-gang YANG1,2,3,4,Yin-zhi HE2,3   

  1. 1.Postdoctoral Station of Mechanical Engineering, Tongji University, Shanghai 201804, China
    2.Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China
    3.Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai 201804, China
    4.Beijing Aeronautical Science & Technology Research Institute, Beijing 102211, China
  • Received:2019-06-04 Online:2020-09-01 Published:2020-09-16
  • Contact: Yi-gang WANG E-mail:zhe.shen@sawtc.com;yigang.wang@sawtc.com

摘要:

风洞试验中外场声源定位因射流结构产生声源漂移,未知声源因位置不确定造成的定位焦距不准确将增大测量声漂移误差。本文基于几何声学理论推导,确定声漂移量误差与定位焦距误差成正比关系,基于此关系,针对固体表面目标声源空间分布情况,通过试验件外形几何关系建立声源位置函数,用逼近法获取更精准的定位焦距进而降低声漂移误差,其结果通过风洞试验验证。研究表明,此逼近法能快速降低定位焦距误差,消除由位置不确定带来的声漂移量误差。

关键词: 车辆工程, 风洞, 声漂移, 逼近法, 几何声学

Abstract:

In wind tunnel test, sound source drifts due to jet structure when locating in outfield. The measured sound drift error is enlarged due to inaccurate locating focus distance caused by uncertainty of sound source location. Base on geometric acoustics theory, this paper proofs that the acoustic drift error is proportional to the locating focus distance error. The position function of sound source is established using the surface geometric relationship of test piece according to the spatial distribution of the target sound source. More accurate locating focus distance is obtained by approximation method, thus, the sound drift error was reduced. The effectiveness of the method is verified by wind tunnel test. This approximation method can reduce the locating focus distance error apace and eliminate the sound drift error caused by location uncertainty.

Key words: vehicle engineering, wind tunnel, sound drift, approximation method, geometrical acoustics

中图分类号: 

  • U476.1

图1

相位传声器阵列识别声源的原理"

图2

射流中的声传播与声漂移"

图3

焦距误差引起声漂移计算误差示例"

图4

外轮廓曲线处理示意"

图5

逼近修正原理"

图6

扬声器位置"

表1

逼近后的焦距误差Δfn"

逼近次数nβ=-10° 前喇叭β=-10° 后喇叭β=+10° 前喇叭β=+10° 后喇叭
00.7310.7310.7310.731
10.0060.0050.0050.007
2<0.001<0.001<0.001<0.001

表2

修正后声源位置误差ΔESn (m)"

逼近次数nβ=-10°前喇叭β=-10°后喇叭β=+10°前喇叭β=+10°后喇叭
00.2210.2760.2380.253
10.0090.0120.0070.018
20.0090.0130.0070.018
1 杨博, 傅立敏. 稳态数值模拟在轿车外气动噪声源预测中的应用[J]. 吉林大学学报: 工学版, 2007, 37(5): 1005-1008.
Yang Bo, Fu Li-min. Application of steady state numerical simulation to prediction of sedan exterior aeroacoustic sources[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(5): 1005-1008.
2 Amiet R K. Refraction of sound by a shear layer[J]. Journal of Sound & Vibration, 1978, 58(4): 467-482.
3 沈哲, 王毅刚, 杨志刚, 等. 整车风洞射流对声传播路径影响的试验研究[J]. 汽车工程, 2016, 38(12): 1440-1445, 1451.
Shen Zhe, Wang Yi-gang, Yang Zhi-gang, et al. An experimental research on the effects of full scale vehicle wind tunnel jet flow on sound propagation path[J]. Automotive Engineering, 2016, 38(12): 1440-1445, 1451.
4 Tam C K W, Auriault L. Mean flow refraction effects on sound radiated from localized sources in a jet[J]. Journal of Fluid Mechanics, 1998, 370: 149-174.
5 Wang Y, Yang J, Jia Q, et al. An improved correction method for sound source drift in a jet flow and its application to a wind tunnel measurement[J]. Acta Acustica United with Acustica, 2015, 101(3): 642-649.
6 Balsa T F. Refraction and shielding of sound from a source in a jet[J]. Journal of Fluid Mechanics, 1976, 76(6): 443-456.
7 Schlinker R H, Amiet R K. Refraction and scattering of sound by a shear layer[J]. Journal of the Acoustical Society of America, 1981, 70(6): 1797.
8 张军, 王勋年, 张俊龙, 等. 开口风洞声阵列测量的剪切层修正方法[J]. 实验流体力学, 2018, 32(4): 39-46.
Zhang Jun,Wang Xun-nian,Zhang Jun-long,et al. Shear layer correction methods for open-jet wind tunnel phased array test[J]. Journal of Experiments in Fluid Mechanic, 2018, 32(4): 39-46.
9 Silva C I D, Meneghini J, Azarpeyvand M. Refraction effects on far-field noise predictions and sources distribution of coplanar coaxial jet flows[EB/OL].[2011-05-08].
10 高印寒, 周晓华, 杨开宇, 等. 基于小波分析的声全息识别运动声源的方法[J]. 吉林大学学报: 工学版, 2007, 37(5): 1197-1202.
Gao Yin-han, Zhou Xiao-hua, Yang Kai-yu, et al. Wavelet based acoustic holography method for moving sound source identification[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(5): 1197-1202.
11 Chen J C, Yao K, Hudson R E. Acoustic source localization and beamforming: theory and practice[J]. EURASIP Journal on Advances in Signal Processing, 2003(4): 359-370.
12 Mueller T J. Aero-acoustic Measurement[M]. Berlin: Springer, 2002.
13 沈哲, 王毅刚, 杨志刚,等. 基于剪切层扇形分层模型的射流声传播分析[J]. 同济大学学报: 自然科学版, 2017, 45(4): 596-601.
Shen Zhe, Wang Yi-gang, Yang Zhi-gang, et al. Acoustic propagation analysis of jet flow base on stratified fan-shaped shear layer model[J]. Journal of Tongji University(Natural Science), 2017, 45(4): 596-601.
[1] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[2] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[3] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[4] 陈吉清,蓝庆生,兰凤崇,刘照麟. 基于轮胎力预判与拟合的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1565-1573.
[5] 李小雨,许男,仇韬,郭孔辉. 各向异性刚度对轮胎力学特性及车辆操纵性的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 389-398.
[6] 陈鑫,王宁,沈传亮,冯晓,杨昌海. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426-436.
[7] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[8] 赖晨光,王擎宇,胡博,文凯平,陈彦宇. 静气动弹性影响下带小翼汽车尾翼的设计与优化[J]. 吉林大学学报(工学版), 2020, 50(2): 399-407.
[9] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
[10] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[11] 郭孔辉,黄世庆,吴海东. 适用于高频激励的面内轮胎动态模型[J]. 吉林大学学报(工学版), 2020, 50(1): 19-28.
[12] 王哲,谢怡,臧鹏飞,王耀. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36-43.
[13] 史文库,陈龙,张贵辉,陈志勇. 多级刚度双质量飞轮扭转特性建模与试验验证[J]. 吉林大学学报(工学版), 2020, 50(1): 44-52.
[14] 管欣,金号,段春光,卢萍萍. 汽车行驶道路侧向坡度估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1802-1809.
[15] 陈鑫,阮新建,李铭,王宁,王佳宁,潘凯旋. 基于大涡模拟的离散格式改进方法及应用[J]. 吉林大学学报(工学版), 2019, 49(6): 1756-1763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!