吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 134-138.doi: 10.13229/j.cnki.jdxbgxb20190957

• 车辆工程·机械工程 • 上一篇    

基于惯性测量单元/轮速融合的车辆零速检测方法

熊璐1,2(),魏琰超1,2,高乐天1,2   

  1. 1.同济大学 汽车学院,上海 201804
    2.同济大学 新能源汽车工程中心,上海 201804
  • 收稿日期:2019-10-15 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:熊璐(1978-),男,教授,博士生导师.研究方向:新能源汽车底盘动力学控制,智能汽车控制. E-mail:xiong_lu@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(51975414)

Inertial measurement unit/wheel speed sensor integrated zero-speed detection

Lu XIONG1,2(),Yan-chao WEI1,2,Le-tian GAO1,2   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Clean Energy Automotive Engineering Center,Tongji University,Shanghai 201804,China
  • Received:2019-10-15 Online:2021-01-01 Published:2021-01-20

摘要:

仅依赖惯性测量单元 (IMU)的零速检测器存在动态中零速误判的情况,从而导致误修正等问题。为在车载组合导航中解决上述问题,提出了基于广义似然比检验的IMU/轮速融合零速检测方法,并进行了试验验证。试验结果表明,相比于仅依赖IMU的零速检测器或仅依赖轮速的零速检测器,基于IMU/轮速融合的零速检测器减少了动态中的误判情况,提升了零速检测的准确性。

关键词: 车辆工程, 轮速, 奈曼-皮尔逊准则, 零速检测

Abstract:

Zero speed detection is a key technology in vehicle integrated navigation and is the basis for zero speed error correction and initial quasi-static alignment. Zero-speed detectors that rely solely on IMU (Inertial Measurement Unit) have zero-speed misjudgment in dynamics conditions, which leads to the problems such as erroneous updates. In order to solve the mentioned problems in vehicle integrated navigation, a novel zero-speed detection method based on generalized likelihood ratio test and IMU/wheel speed fusion is proposed, which is then verified by experiments. The test results show that compared to the zero-speed detector relying only on IMU or only on the wheel speed, the zero-speed detector based on the IMU/wheel speed sensor fusion could reduce the misjudgment in dynamic conditions, and improves the accuracy of zero-speed detection.

Key words: vehicle engineering, wheel speed, Neyman-Pearson criterion, zero speed detection

中图分类号: 

  • U463.6

图1

轮速信号“死区”现象"

图2

试验设备示意图"

图3

SHOE与IMU/轮速融合零速检测器似然比对比"

图4

仅轮速与IMU/轮速融合零速检测器性能对比"

图5

SHOE与IMU/轮速融合零速检测器性能对比"

1 El-Sheimy N, Niu X. The promise of MEMS to the navigation community[J]. Inside GNSS, 2007, 2(2): 46-56.
2 Skog I, Handel P. In-car positioning and navigation technologies—a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 4-21.
3 Roetenberg D, Slycke P J, Veltink P H. Ambulatory position and orientation tracking fusing magnetic and inertial sensing[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(5): 883-890.
4 宋宇, 朱锋, 卢立果, 等. 车载 GNSS/SINS 组合导航中零速区间探测方法的改进[J]. 测绘地理信息, 2016, 41(6): 12-16.
Song Yu, Zhu Feng, Lu Li-guo, et al. Improvement of zero velocity detection method in vehicle GNSS/SINS integrated navigation[J]. Journal of Geomatics, 2016, 41(6): 12-16.
5 格鲁夫. GNSS与惯性及多传感器组合导航系统原理[M]. 北京:国防工业出版社, 2015.
6 Godha S, Lachapelle G. Foot mounted inertial system for pedestrian navigation[J]. Measurement Science and Technology, 2008, 19(7): 075202.
7 Veltink P H, Bussmann H B J, de Vries W, et al. Detection of static and dynamic activities using uniaxial accelerometers[J]. IEEE Transactions on Rehabilitation Engineering, 1996, 4(4): 375-385.
8 Godha S, Lachapelle G, Cannon M E. Integrated GPS/INS system for pedestrian navigation in a signal degraded environment[C]∥ION GNSS, Fort Worth TX, St. Louis, Missouri, 2006: 1-14.
9 Skog I, Handel P, Nilsson J O, et al. Zero-velocity detection—an algorithm evaluation[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(11): 2657-2666.
10 Ma M, Song Q, Gu Y, et al. An adaptive zero velocity detection algorithm based on multi-sensor fusion for a pedestrian navigation system[J]. Sensors, 2018, 18(10): 1-16.
11 Carlson C R, Gerdes J C, Powell J D. Error sources when land vehicle dead reckoning with differential wheel speeds[J]. Navigation, 2004, 51(1):13-27.
[1] 马芳武,梁鸿宇,王强,蒲永锋. 双材料负泊松比结构的面内冲击动力学性能[J]. 吉林大学学报(工学版), 2021, 51(1): 114-121.
[2] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[3] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[4] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[5] 陈吉清,蓝庆生,兰凤崇,刘照麟. 基于轮胎力预判与拟合的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1565-1573.
[6] 杨志刚,范亚军,夏超,储世俊,单希壮. 基于双稳态尾迹的方背Ahmed模型减阻[J]. 吉林大学学报(工学版), 2020, 50(5): 1635-1644.
[7] 沈哲,王毅刚,杨志刚,贺银芝. 风洞中未知声源漂移误差的逼近修正[J]. 吉林大学学报(工学版), 2020, 50(5): 1584-1589.
[8] 刘钊,程江琳,朱玉田,郑立辉. 轨道车辆垂向振动建模及运动关联分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1600-1607.
[9] 李小雨,许男,仇韬,郭孔辉. 各向异性刚度对轮胎力学特性及车辆操纵性的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 389-398.
[10] 陈鑫,王宁,沈传亮,冯晓,杨昌海. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426-436.
[11] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[12] 赖晨光,王擎宇,胡博,文凯平,陈彦宇. 静气动弹性影响下带小翼汽车尾翼的设计与优化[J]. 吉林大学学报(工学版), 2020, 50(2): 399-407.
[13] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
[14] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[15] 郭孔辉,黄世庆,吴海东. 适用于高频激励的面内轮胎动态模型[J]. 吉林大学学报(工学版), 2020, 50(1): 19-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!