吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1734-1741.doi: 10.13229/j.cnki.jdxbgxb20200599

• 交通运输工程·土木工程 • 上一篇    

预制T梁早期水化热温度效应及梁端开裂机理

惠迎新1,2,3(),孙晓荣1,王红雨1,高晨1   

  1. 1.宁夏大学 土木与水利工程学院,银川 750021
    2.宁夏交通建设股份有限公司,银川 750002
    3.宁夏道路养护工程技术研究中心,银川 750001
  • 收稿日期:2020-08-10 出版日期:2021-09-01 发布日期:2021-09-16
  • 作者简介:惠迎新(1985-),男,副教授,硕士生导师.研究方向:桥梁抗震与桥梁结构分析.E-mail:huiyx@seu.edu.cn
  • 基金资助:
    宁夏回族自治区重点研发计划项目(2020BFG02005)

Effect of hydration heat temperature and cracking mechanism of beam end in early stage of T⁃beam

Ying-xin HUI1,2,3(),Xiao-rong SUN1,Hong-yu WANG1,Chen GAO1   

  1. 1.School of Civil and Hydraulic Engineering,Ningxia University,Yinchuan 750021,China
    2.Ningxia Communications Construction Co. ,Ltd. ,Yinchuan 750002,China
    3.Ningxia Engineering Technology Research Center for Road Maintenance,Yinchuan 750002,China
  • Received:2020-08-10 Online:2021-09-01 Published:2021-09-16

摘要:

为避免预制混凝土T梁在施工养护期间产生较高的水化热而导致梁端出现早期竖向裂缝,以一座40 m预应力混凝土T梁为研究对象,对其浇筑过程水化热发展及早龄期力学性能进行监测与测试,并基于实测结果建立考虑梁段早期时变的精细化有限元模型,研究浇筑过程水化热温度场演变特征、梁端应力分布规律。结果表明:40 m跨预制T梁在混凝土浇筑初期,靠近梁端位置因水化过程中的温度迅速聚集而具有较高的开裂风险,且在距梁端2~4 m区域的腹板靠近翼缘板位置易贯通。建议控制入模温度在20 ℃以内并采用优化配合比的方法,减少水泥用量或采用低水化热水泥,以达到降低水化热和防止裂缝产生的目的。

关键词: 预应力混凝土T型梁, 梁端裂缝, 水化热, 温度场, 应力场, 有限元法

Abstract:

In order to avoid high hydration heat of precast concrete T beam during construction and maintenance, early vertical cracks appear at the beam end. Taking a 40-meter prestressed concrete T-beam as the research object, the mechanical properties of the concrete t-beam during the pouring process were monitored and tested. According to the measured results, a refined finite element model considering the early time-varying of the beam segment was established. And based on the above model, the evolution characteristics of hydration heat temperature field and the stress distribution law at the end of the beam during pouring process were studied. The results show that in the initial stage of concrete pouring of the 40-meter-span precast T-beam, the position near the beam end has a higher risk of cracking due to the rapid accumulation of temperature during the hydration process. In the area 2m~4m away from the beam end, the cracks are easy to penetrate through the web near the flange plate. It is recommended to control the mold-in temperature within 20 ℃, and adopt the method of optimizing the mixing ratio, reduce the amount of cement or use low-heat-of-hydration cement to reduce the heat of hydration and prevent cracking.

Key words: prestressed concrete T-beam, crack at the beam end, hydration heat, temperature field, stress field, finite element method

中图分类号: 

  • U441

图1

预制T梁梁端腹板裂缝现场图"

图2

梁端截面测点布置图"

图3

预制T梁梁端2 m和4 m截面相关测点水化热温度时程曲线"

表1

预制梁各测点温度峰值"

测点名称2 m截面峰值/℃4 m截面峰值/℃
测点1、342.940.9
测点4、543.843.0
测点7、946.044.4
测点11、1343.543.9
测点243.542.3
测点650.849.9
测点853.851.9
测点1058.956.2
测点1252.850.5

表2

预制T梁混凝土的早龄期力学性能"

龄期τ/df(cu,τ)/MPaf(t,τ)/MPa
113.51.32
329.32.20
536.62.55
741.42.78
1046.53.00
2861.33.60

图4

网格化有限元模型"

表3

混凝土表面的综合热交换系数"

文献风速/(m·s-1部位

热交换系数/

(W·m-2·K-1

10v顶板?=10.942+4v
腹板?=9.428+4v
底板?=7.514+4v

表4

混凝土配合比与材料热工参数"

项目水泥外加剂
比热/[kJ·(kg·℃)-14.190.460.700.69

导热系数/

[kJ·(m·h·℃)-1

2.164.4511.1310.50
百分比/%5.7715.6329.6044.400.49

图5

梁端2 m截面测点实测与计算温度时程对比图"

图6

特征截面测点温度时程对比图"

图7

梁端2 m和4 m截面的测点第一主应力时程曲线"

图8

不同入模温度下温度时程对比图"

表5

不同变量参数下的温度峰值"

模型编号入模 温度/℃温度 峰值/℃模型 编号水泥含量/(kg·m-3温度 峰值/℃
1基准模型54.11#基准模型54.1
21550.42#36051.9
32556.73#37053.3
43058.74#39055.1
5#40056.4
1 宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报: 工学版, 2015, 45(1): 112-120.
Su Xiao-ping, Wang Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 112-120.
2 张宁, 周鑫, 刘永健, 等. 基于点阵式测量的混凝土箱梁水化热温度场原位试验[J]. 土木工程学报, 2019, 52(3) :76-86.
Zhang Ning, Zhou Xin, Liu Yong-jian, et al. In-situ test on hydration heat temperature of box girder based on array measurement[J]. China Civil Engineering Journal, 2019, 52(3): 76-86.
3 戴公连, 岳喆. 混凝土箱梁早期温度测试与分析[J].武汉大学学报: 工学版, 2019, 52(2): 139-144.
Dai Gong-lian, Yue Zhe. Test and analysis of early temperature of concrete box girder[J]. Engineering Journal of Wuhan University, 2019, 52(2): 139-144.
4 顾斌, 陈志坚, 陈欣迪. 大跨径混凝土箱梁桥有效温度与应变的实测分析[J]. 吉林大学学报: 工学版, 2013, 43(4): 877-884.
Gu Bin, Chen Zhi-jian, Chen Xin-di. Analysis of measured effective temperature and strains of long-span concrete box girder bridge[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(4): 877-884.
5 Taysi N, Abid S R. Temperature distributions and variations in concrete box-girder bridges: experimental and finite element parametric studies[J]. Advances in Structural Engineering, 2015, 4(18): 469-486.
6 Wang Y B, Zhan Y L, Zhao R D. Analysis of thermal behavior on concrete box-girder arch bridges under convection and solar radiation[J]. Advances in Structural Engineering, 2016, 19(7): 1043-1059.
7 李昀. 预应力混凝土T梁裂缝成因分析与处理[J].铁道科学与工程学报, 2015, 12(2): 330-334.
Li Yun. Cause analysis and treatment of cracks in prestressed concrete T beams[J]. Journal of Railway Science and Engineering, 2015, 12(2): 330-334.
8 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 2012.
9 Zhu S Y, Cai C B. Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads[J]. International Journal of Non-Linear Mechanics, 2014, 58(1): 222-232.
10 彭友松. 混凝土桥梁结构日照温度效应理论及应用研究[D]. 成都: 西南交通大学土木工程学院, 2007.
Peng You-song. Studies on theory of solar radiation thermal effects on concrete bridges with application [D]. Chengdu: College of Civil Engineering, Southwest Jiaotong University, 2007.
11 Zhu J S, Meng Q L. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22(6): 1-19.
12 汪建群, 方志, 刘杰. 大跨预应力混凝土箱梁水化热测试与分析[J]. 桥梁建设, 2016, 46(5): 29-34.
Wang Jian-qun, Fang Zhi, Liu Jie. Measurement and analysis of hydration heat of long span PC Box- girders[J]. Bridge Construction, 2016, 46(5): 29-34.
13 朱伯芳. 水工混凝土结构的温度应力与温度控制[M]. 北京: 水科电力出版社, 1976.
14 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报: 工学版, 2018, 48(5): 1418-1425.
Song Jun, Shi Xue-fei, Ruan Xin. Optimization of thermal parameter identification for mass concrete[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1418-1425.
[1] 王金国,黄恺,闫瑞芳,任帅,王志强,郭劲. 元胞自动机-有限元法模拟碳当量元素对亚共晶球墨铸铁流动性的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 855-865.
[2] 刘纯国,于晓彤,岳韬,李东来,张明哲. 双曲率筋条壁板铣削回弹预测[J]. 吉林大学学报(工学版), 2021, 51(1): 188-199.
[3] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[4] 张艳芹,冯雅楠,孔鹏睿,于晓东,孔祥滨. 基于热油携带的静压支承油膜温度场及试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1203-1211.
[5] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
[6] 周晓勤,杨璐,张磊,陈立军. 具有负压缩性的铰接八面体结构的有限元分析[J]. 吉林大学学报(工学版), 2019, 49(3): 865-871.
[7] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[8] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[9] 王国林, 孙砚田, 梁晨, 杨建, 周海超. 应用满应力理论的轮胎轮廓设计[J]. 吉林大学学报(工学版), 2017, 47(2): 365-372.
[10] 刘程, 史文库, 陈志勇, 何伟, 荣如松, 宋怀兰. 汽车驱动桥准双曲面齿轮齿根弯曲应力预测与试验[J]. 吉林大学学报(工学版), 2017, 47(2): 344-352.
[11] 邵晴, 徐涛, 徐从占, 郭昊添, 郭桂凯, 张海博. 基于聚醚醚酮保持架的角接触球轴承特性仿真[J]. 吉林大学学报(工学版), 2017, 47(1): 163-168.
[12] 闫光, 庄炜, 刘锋, 祝连庆. 具有增敏效果的光纤光栅应变传感器的预紧封装及传感特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1739-1745.
[13] 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报(工学版), 2016, 46(2): 445-450.
[14] 肖湘, 黄恩厚, 尼颖升. 预应力混凝土梁板体系有效翼缘的理论分析及试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1784-1790.
[15] 史栋勇1, 2, 盈亮3, 胡平1, 3, 申国哲3, 武文华2, 姜大鑫3. 高强度钢板热成形三维温度场数值模拟分析[J]. 吉林大学学报(工学版), 2014, 44(4): 946-952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!