吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2295-2303.doi: 10.13229/j.cnki.jdxbgxb20200680

• 通信与控制工程 • 上一篇    

永磁直线同步电机自适应模糊分数阶滑模精密运动控制

魏东辉1(),汪霭廷1,计京鸿2,房俊龙1()   

  1. 1.东北农业大学 电气与信息学院,哈尔滨 150030
    2.哈尔滨华德学院,哈尔滨 150025
  • 收稿日期:2020-09-04 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 房俊龙 E-mail:weidonghui@neau.edu.cn;junlongfang@126.com
  • 作者简介:魏东辉(1981-),男,讲师,博士. 研究方向:电力系统自动化,伺服控制. E-mail:weidonghui@neau.edu.cn
  • 基金资助:
    哈尔滨市科技局项目(2017RAXXJ075)

Adaptive fuzzy fractional⁃order sliding mode precise motion control of permanent magnet linear synchronous motor

Dong-hui WEI1(),Ai-ting WANG1,Jing-hong JI2,Jun-long FANG1()   

  1. 1.College of Electrical and Information,Northeast Agricultural University,Harbin 150030,China
    2.Harbin Huade College,Harbin 150025,China
  • Received:2020-09-04 Online:2021-11-01 Published:2021-11-15
  • Contact: Jun-long FANG E-mail:weidonghui@neau.edu.cn;junlongfang@126.com

摘要:

为解决永磁直线同步电机(PMLSM)伺服系统中存在不确定性而影响伺服精度的问题,本文提出了一种自适应模糊分数阶滑模控制(AFFOSMC)方法以保证PMLSM的动子位置精密跟随给定。首先,建立含有参数变化、外部扰动等不确定性的PMLSM数学模型。然后,设计分数阶滑模控制(FOSMC)方法以保证系统的鲁棒性。由于在实际应用中难以确定FOSMC的切换控制增益,因此采用AFFOSMC对系统的不确定性进行估计。同时,针对AFFOSMC的估计误差以及FOSMC中切换控制引起的抖振,设计自适应模糊到达调节器(AFRR)对其进行补偿。因此,在不需要不确定性边界信息的情况下,仍可实现伺服性能的进一步提高。最后,基于DSP的系统实验结果表明,本文AFFOSMC方法能够有效减弱参数变化和外部干扰等对系统造成的影响,提高系统的鲁棒性,并能精确跟踪响应。

关键词: 永磁直线同步电机, 分数阶, 模糊控制, 滑模控制

Abstract:

In order to solve the problem that the uncertainty in the servo system of Permanent Magnet Linear Synchronous Motor (PMLSM) affects the servo accuracy, an Adaptive Fuzzy Fractional Order Sliding Mode Control (AFFOSMC) method was proposed to ensure that the actuator position of the PMLSM follows the given position precisely. Firstly, the mathematical model of PMLSM with the uncertainty of parameter change and external disturbance was established. Then, Fractional Order Sliding Mode Control (FOSMC) was designed to ensure the robustness of the system. Because it was difficult to determine the switching control gain of FOSMC in application, AFFOSMC was used to estimate the uncertainty of the system. At the same time, an Adaptive Fuzzy Reaching Regulator (AFRR) was designed to compensate the estimation error of AFFOSMC. Therefore, the chattering can be further weakened and the performance can be improved without the uncertain boundary information. Finally, experiments show that the proposed AFFOSMC method can effectively reduce the impact of parameter changes and external disturbances on the system, improve the robust control performance and accurate tracking response of the system.

Key words: permanent magnet linear synchronous motor, fractional-order, fuzzy control, sliding mode control

中图分类号: 

  • TM351

图1

基于AFFOSMC的PMLSM系统控制总体框图"

图2

FOSMC控制框图"

图3

高斯隶属函数"

图4

基于AFFOSMC的PMLSM控制系统框图"

图5

PMLSM控制系统平台"

表1

PMLSM主要参数"

参 数数值
定子电阻/Ω3
dq轴电感/mH31
极对数2
黏性摩擦因数/(N·s·m-10.4
动子质量/kg1.2

图6

标称状态下FOSMC实验曲线"

图7

标称状态下AFFOSMC实验曲线"

图8

负载变化曲线"

图9

负载扰动条件下位置跟踪误差曲线"

图10

正弦信号下FOSMC实验曲线"

图11

正弦信号下FOSMC-RBFNN实验曲线"

图12

正弦信号下AFFOSMC实验曲线"

1 李金子, 肖炯然, 潘剑飞. 多永磁同步直线电机协同控制研究[J]. 吉林大学学报:信息科学版, 2019, 37(1):32-39.
Li Jin-zi, Xiao Jiong-ran, Pan Jian-fei. Research on cooperative control of Mmulti-PMSM linear Mmotors[J]. Journal of Jilin University(Information Science Edition), 2019, 37(1): 32-39.
2 赵健, 邓志辉, 朱冰,等. 面向电子机械助力制动的永磁同步电机位置伺服控制[J]. 吉林大学学报:工学版, 2020, 50(3):834-841.
Zhao Jian, Deng Zhi-hui, Zhu Bing, et al. Position servo control of permanent magnet synchronous motor for electro⁃mechanical brake booster[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 834-841.
3 Li L Y, Guo Q B, Liu J X, et al. Design and implementation of a high-performance PMLSM control system with deadbeat current control and SMC[J]. Applied Mechanics & Materials, 2013, 2689: 692-697.
4 Zhang Y M, Yan P. An adaptive integral sliding mode control approach for piezoelectric nano-manipulation with optimal transient performance[J]. Mechatronics, 2018, 52: 119-126.
5 王坤, 王建美, 王芳, 等. 非匹配不确定系统的滑模控制及在电机控制中的应用[J]. 控制理论与应用, 2019,36(1): 143-150.
Wang Kun, Wang Jian-mei, Wang Fang, et al. Sliding mode control for nonlinear system with mismatched uncertainties and application in motor control[J]. Control Theory & Applications, 2019, 36(1): 143-150.
6 王春风, 赵青青, 孟旭,等. 直流电机的非奇异快速Terminal滑模位置控制[J]. 哈尔滨理工大学学报, 2019, 24(4): 36-41.
Wang Chun-feng, Zhao Qing-qing, Meng Xu, et al. Non-singular fast Terminal sliding mode position control for DC motor[J]. Journal of Harbin University of Science and Technology, 2019, 24(4): 36-41.
7 侯利民, 王巍. 表面式永磁同步电机无源非奇异快速终端滑模控制[J]. 电工技术学报, 2014, 29(11):45-52.
Hou Li-min, Wang Wei. Passivity-based control and nonsingular mode control for SPMSM[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 45-52.
8 Maddahi A, Sepehri N, Kinsner W. Fractional-order control of hydraulically powered actuators: controller design and experimental validation[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2):796-807.
9 Ullah N, Wang Shao-ping, Khattak M I, et al. Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and nonlinearities[J]. Aerospace Science and Technology, 2015, 43: 381-387.
10 Ebrahimkhani S. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines[J]. ISA Transactions, 2016, 63: 343-354.
11 党选举, 徐小平, 于晓明, 等.永磁同步直线电机的小波神经网络控制[J]. 电机与控制学报, 2013, 17(1):43-50.
Dang Xuan-ju, Xu Xiao-ping, Yu Xiao-ming, et al. Control for PMLSM based on wavelet neural network[J]. Electric Machines and Control, 2013, 17(1):43-50.
12 Ting C S, Lieu J F, Liu C S, et al. An adaptive FNN control design of PMLSM in stationary reference frame[J]. Journal of Control Automation & Electrical Systems, 2016, 27(4):391-405.
13 王香, 张永林. 基于RBF神经网络的AUV路径跟踪分数阶滑模控制[J]. 水下无人系统学报, 2020, 28(3):284-290.
Wang Xiang, Zhang Yong-lin. Fractional-order sliding mode control based on RBF neural network for AUV path tracking [J]. Journal of Unmanned Undersea Systems, 2020, 28(3):284-290.
[1] 罗勇,韦永恒,黄欢,肖人杰,任淋,崔环宇. 驾驶员意图识别的P2.5插混构型双离合器起步控制[J]. 吉林大学学报(工学版), 2021, 51(5): 1575-1582.
[2] 施昕昕,黄家才,高芳征. 基于分数阶BICO滤波器的运动控制测量噪声抑制[J]. 吉林大学学报(工学版), 2021, 51(5): 1873-1878.
[3] 龙江启,向锦涛,俞平,王骏骋. 适用于非线性主动悬架滑模控制的线性干扰观测器[J]. 吉林大学学报(工学版), 2021, 51(4): 1230-1240.
[4] 张家旭,王欣志,赵健,施正堂. 汽车高速换道避让路径规划及离散滑模跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1081-1090.
[5] 周挺,徐宇工,吴斌. 球形机器人的自适应分数阶PIλDμ滑模速度控制方法[J]. 吉林大学学报(工学版), 2021, 51(2): 728-737.
[6] 初亮,董力嘉,许楠,张立峰,贾一帆,杨志华. 基于开绕组电机的增程式电动车动力系统构型及其功率分配[J]. 吉林大学学报(工学版), 2021, 51(1): 72-82.
[7] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[8] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[9] 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471.
[10] 李寿涛,李秋媛,刘辉,丁辉,田彦涛,于丁力. 可实现车辆稳定性控制的滑模变结构策略[J]. 吉林大学学报(工学版), 2019, 49(4): 1288-1292.
[11] 李静,石求军,刘鹏,户亚威. 基于纵向车速估算的商用车ABS神经网络滑模控制[J]. 吉林大学学报(工学版), 2019, 49(4): 1017-1025.
[12] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[15] 王伟, 王庆年, 田涌君, 王仁广, 温泉. 基于模糊控制功率分流式混合动力客车控制策略[J]. 吉林大学学报(工学版), 2017, 47(2): 337-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!