吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2256-2264.doi: 10.13229/j.cnki.jdxbgxb20210478

• 车辆工程·机械工程 • 上一篇    

液压挖掘机动臂势能交互回收利用系统特性

胡鹏1(),朱建新1,2(),刘昌盛2,张大庆2   

  1. 1.中南大学 高性能复杂制造国家重点实验室,长沙 410083
    2.山河智能装备股份有限公司 技术中心,长沙 410100
  • 收稿日期:2021-03-31 出版日期:2022-10-01 发布日期:2022-11-11
  • 通讯作者: 朱建新 E-mail:hupeng3961@163.com;zjianx-918@163.com
  • 作者简介:胡鹏(1988-),男,博士. 研究方向:工程机械节能. E-mail: hupeng3961@163.com
  • 基金资助:
    国家科技支撑计划项目(2014BAA04B01);湖南省战略新兴产业科技攻关项目(2019GK4014)

Characteristics of boom potential energy alternate recovery and utilization system of hydraulic excavator

Peng HU1(),Jian-xin ZHU1,2(),Chang-sheng LIU2,Da-qing ZHANG2   

  1. 1.State Key Laboratory of High Performance Complicated,Central South University,Changsha 410083,China
    2.R&D Center,Sunward Intelligent Equipment Co. Ltd. ,Changsha 410100,China
  • Received:2021-03-31 Online:2022-10-01 Published:2022-11-11
  • Contact: Jian-xin ZHU E-mail:hupeng3961@163.com;zjianx-918@163.com

摘要:

针对传统能量回收系统发热及由此带来的系统可靠性问题,设计了一种基于多液压缸的挖掘机动臂势能交互回收利用系统,并对其特性进行了研究。对动臂势能交互回收利用系统工作原理及能量特性进行分析,针对35 t级挖掘机作业过程中动臂势能的变化特征,进行基于液压缸和蓄能器的系统参数设计。进一步建立了挖掘机能量回收系统虚拟仿真平台,分别对系统运行特性和节能效率进行研究。最后,搭建能量回收系统测试平台,对系统可行性与能效特性进行测试。动臂升降单动作的仿真与试验结果表明,与常规挖掘机相比,该能量回收系统主泵输出的峰值压力降低了57.8%,系统节能效率为51.5%,同时整机操控性保持良好。

关键词: 机械电子工程, 液压挖掘机, 能量回收, 运行特性, 参数匹配

Abstract:

Aiming at the problem of heating and reliability of traditional energy recovery system, a potential energy interactive recovery system of excavator boom based on multiple hydraulic cylinders was designed, and its characteristics were researched. The working principle and energy characteristics of the boom potential energy interactive recycling system were analyzed. According to the operation characteristics of the 35 t excavator and the change of boom potential energy, the system parameters were designed based on the hydraulic cylinder and accumulator. Furthermore, the virtual simulation model of excavator energy recovery was established to analyze the operation characteristics and energy-saving efficiency of the system. Finally, an energy recovery system test platform was built to test the feasibility and energy efficiency characteristics of the system. The simulation and test results of single action of boom lifting show that, compared with the conventional excavator, the peak pressure of the main pump output of the energy recovery system is reduced by 57.8%, the energy-saving efficiency of the system is 51.5%, while the controllability of excavator remains good at the same time.

Key words: mechatronic engineering, hydraulic excavator, energy recovery, operating characteristics, parameter matching

中图分类号: 

  • TH39

图1

动臂势能交互回收利用系统"

图2

势能交互回收利用系统能量流分析"

图3

不同蓄能器容积下主泵输出功率与能量曲线图"

图4

不同蓄能器压力下的能量利用缸无杆腔压力"

图5

能量回收挖掘机仿真平台"

图6

常规系统压力曲线"

图7

势能交互回收利用系统压力"

图8

动臂运动特性对比"

图9

主泵输出功率对比"

图10

主泵输出能量对比"

图11

主泵工作点分布对比"

图12

动臂势能交互回收利用系统试验样机"

图13

动臂油缸与蓄能器压力试验曲线"

图14

主泵压力试验曲线"

表1

动臂单动作时间对比"

项 目动臂举升时间/s动臂下降时间/s

能量回收系统

常规系统

4.0

4.3

5.2

5.0

1 Wang T, Wang Q F. Modelling and control of a novel hydraulic system with energy regeneration[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatrolics(AIM), Kaohsiung(Taiwan),China, 2012: 922-927.
2 Kagoshima M, Komiyama M, Nanjo T, et al. Development of new hybrid excavator[J]. Kobelco Technology Review, 2007, 27(27): 39-42.
3 龚俊,何清华,张大庆,等. 基于电液能量回收的挖掘机节能系统仿真评价与试验[J]. 吉林大学学报:工学版, 2016, 46(2): 479-486.
Gong Jun, He Qing-hua. Zhang Da-qing,et al. Evaluation and testing of electric-hydraulic energy regeneration system of excavator[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 479-486.
4 Kwon T, Lee S, Sul S. Power control algorithm for hybrid excavator with supercapacitor [J]. IEEE Transactions on Industry Applications, 2010, 46(4): 1447-1455.
5 肖清,王庆丰,张彦廷. 液压挖掘机混合动力系统建模及控制策略研究[J]. 浙江大学学报:工学版, 2007, 41(3): 480-483.
Xiao Qing, Wang Qing-feng, Zhang Yan-ting. Study on modeling and control strategy of hybrid system in hydraulic excavator[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(3): 480-483.
6 龚俊. 基于液压马达-泵-电机的挖掘机能量回收系统及控制方法[D]. 长沙: 中南大学机电学院, 2015.
Gong Jun. Excavator energy recovery system and control method based on recycling integrated unit of hydraulic motor-pump-electrical motor[D]. Chang sha: College of Mechanical and Electrical Engineering,Central South University, 2015.
7 林贵堃. 液压挖掘机基于液压储能平衡的势能回收系统研究[D]. 长沙: 中南大学机电学院, 2019.
Lin Gui-kun. Research on potential energy recovery system of hydraulic excavator based on hydraulic energy storage balance[D]. Changsha: College of Mechanical and Electrical Engineering,Central South University, 2019.
8 李秀磊,吴勇,徐保强,等. 挖掘机动臂液压系统节能研究[J]. 机床与液压, 2015, 43(14): 94-98.
Li Xiu-lei, Wu Yong, Xu Bao-qiang, et al. Research on energy saving of excavator boom hydraulic system[J]. Machine Tool & Hydraulics, 2015, 43(14): 94-98.
9 Xiao Y, Guan C, Perry Y. Optimal design of a compound hybrid system consisting of torque coupling and energy regeneration for hydraulic hybrid excavator[C]∥Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Busan, Korea, 2015: 73-86.
10 肖扬. 油液混合动力挖掘机流量耦合式及扭矩耦合式动力系统研究[D]. 杭州: 浙江大学机械工程学院, 2015.
Xiao Yang. Research on flow coupling and toruqe coupling based power-train of hydraulic hybrid excavator[D]. Hangzhou: College of Mechanical Engineering,Zhejiang University, 2015.
11 于安才,姜继海. 液压混合动力挖掘机能量再生控制研究[J]. 哈尔滨工程大学学报, 2012, 33(1): 92-95.
Yu An-cai, Jiang Ji-hai. Research on energy regeneration control of hydraulic hybrid excavator[J]. Journal of Harbin Engineering University, 2012, 33(1): 92-95.
12 Liang X, Virvalo T. An energy recovery system for a hydraulic crane[J]. Proc IMechE, Part C: Journal of Mechanical Engineerting Science, 2001, 215(6): 737-744.
13 Virvalo T, Sun W. Improving energy utilization in hydraulic booms-what it all about[C]∥Proceedings of the Sixth International Conference on Fluid Power Transmisson and Control, Hangzhou, China, 2005: 55-65.
14 任好玲,林添良,叶月影,等. 基于平衡油缸的动臂势能回收系统参数设计与试验[J]. 中国公路学报, 2017, 30(2): 153-158.
Ren Hao-ling, Lin Tian-liang, Ye Yue-ying, et al. Parameters design and experiment of boom potential energy recovery system based on balance cylinder[J]. China Journal of Highway and Transpor, 2017, 30(2): 153-158.
15 叶月影,林添良,任好玲. 基于平衡油缸的势能液压式存储和再利用研究[J]. 液压与气动, 2018(1): 71-77.
Ye Yue-ying, Lin Tian-liang, Ren Hao-ling. Research on hydraulic storage and reuse of potential energy based on balance cylinder[J]. Chinese Hydraulics & Pneumatics, 2018(1): 71-77.
16 Xia L, Quan L, Ge L, et al. Energy efficiency analysis of integrated drive and energy recuperation system for hydraulic excavator boom[J]. Energy Conversion and Management, 2018, 156: 680-687.
17 Hao Y, Quan L, Cheng H, et al. Potential energy directly conversion and utilization methods used for heavy duty lifting machinery[J]. Energy, 2018, 155: 242-251.
18 王伟平. 大型液压挖掘机气液平衡动臂势能回收系统研究[D]. 徐州: 中国矿业大学机电工程学院, 2018.
Wang Wei-ping. Research on boom potential energy recovery system of large hydraulic excavator based on gas-hydraulic balance unit[D]. Xuzhou: College of Mechanical and Electrical Engineering,China Mining University, 2018.
19 胡鹏,朱建新,刘昌盛,等. 基于状态规则的液压挖掘机虚拟驾驶员建模与仿真研究[J]. 中南大学学报:自然科学版, 2021, 52(4): 1118-1128.
Hu Peng, Zhu Jian-xin, Liu Chang-sheng, et al. Research on modeling and simulation of virtual driver of hydraulic excavator based on state rules[J]. Journal of Central South University (Science and Technology), 2021, 52(4): 1118-1128.
[1] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[2] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[3] 蒋林,周玲,赵慧. 液压伺服柔驱机构设计及其刚度连续可调分析[J]. 吉林大学学报(工学版), 2022, 52(7): 1499-1508.
[4] 王同建,杨书伟,谭晓丹,陈晋市,刘同文,职振领. 基于DEM⁃MBD联合仿真的液压挖掘机作业性能分析[J]. 吉林大学学报(工学版), 2022, 52(4): 811-818.
[5] 施昕昕,黄家才,高芳征. 基于分数阶BICO滤波器的运动控制测量噪声抑制[J]. 吉林大学学报(工学版), 2021, 51(5): 1873-1878.
[6] 李学勇,赵仲秋,张春松,路长厚. 基于有限元的人体⁃机械手交互力计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1612-1619.
[7] 于萍,穆特,朱黎辉,周子业,宋杰. 钻具输送装置非线性动力学分析及稳定性控制[J]. 吉林大学学报(工学版), 2021, 51(3): 820-830.
[8] 李洪雪,李世武,孙文财,王琳虹,杨志发. 考虑垂向⁃侧向运动的半挂列车动力学建模及分析[J]. 吉林大学学报(工学版), 2021, 51(2): 549-556.
[9] 姜继海,赵存然,张冠隆,车明阳. 航空煤油柱塞泵摩擦副涂层材料摩擦性能[J]. 吉林大学学报(工学版), 2021, 51(1): 147-153.
[10] 胡明伟,王洪光,潘新安. 基于正交设计的协作机器人全域结构优化设计[J]. 吉林大学学报(工学版), 2021, 51(1): 370-378.
[11] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[12] 李因武, 吴庆文, 常志勇, 杨成. 基于仿生斗齿的反铲液压挖掘机动臂仿真优化设计[J]. 吉林大学学报(工学版), 2018, 48(3): 821-827.
[13] 刘汉光, 王国强, 孟东阁, 赵寰宇. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报(工学版), 2018, 48(2): 486-491.
[14] 初亮, 孙成伟, 郭建华, 赵迪, 李文惠. 基于轮缸压力的制动能量回收评价方法[J]. 吉林大学学报(工学版), 2018, 48(2): 349-354.
[15] 彭贝, 高宇, 冯培恩, 邱清盈. 液压挖掘机回转启动过程节能技术[J]. 吉林大学学报(工学版), 2016, 46(6): 1912-1921.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!