吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2156-2167.doi: 10.13229/j.cnki.jdxbgxb20220285

• • 上一篇    

基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制

高金武1,2(),王义琳1,2,刘华洋1,2,王艺达2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.吉林大学 通信工程学院,长春 130022
  • 收稿日期:2022-03-22 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:高金武(1983-),男,教授,博士. 研究方向:车辆动力系统控制技术. E-mail:gaojw@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20200501010GX)

Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer

Jin-wu GAO1,2(),Yi-lin WANG1,2,Hua-yang LIU1,2,Yi-da WANG2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
  • Received:2022-03-22 Online:2022-09-01 Published:2022-09-13

摘要:

针对质子交换膜燃料电池(PEMFC)阴极进气系统,提出了一种新型的解耦控制策略,解决了系统进气流量与压力的协同控制难题,实现了二者的高精度控制。建立了关于流量和压力的线性变参数模型,基于模型设计了一种滑模观测器与状态反馈控制器相结合的控制方案,其中状态反馈的增益值通过线性二次型调节器(LQR)进行求解。将控制方案在PEMFC阴极试验平台上进行验证,结果表明,本文方法可以实现对进气流量和压力的高精度控制,达到解耦控制的目的。

关键词: 自动控制技术, 质子交换膜燃料电池, 阴极进气控制, 解耦控制, 滑模观测器, 线性二次型调节器

Abstract:

A new decoupling control strategy was proposed for the air supply system of proton exchange membrane fuel cell (PEMFC), which solves the problem of the cooperative control of the air flow rate and pressure, then realizes the high precision control of the both. A linear variable parameter model of the air flow rate and pressure was established, based on the model, a control scheme combining sliding mode observer and state feedback controller was designed, in which the gain value of state feedback was solved by linear quadratic regulator (LQR). The control scheme is verified on PEMFC cathode experimental platform. The high precision control of the air flow rate and pressure can be realized, and the decoupling control of flow and pressure can be achieved.

Key words: automatic control technology, proton exchange membrane fuel cell, air supply control, decoupling control, sliding mode observer, linear quadratic regulator

中图分类号: 

  • TK91

图1

PEMFC阴极进气系统"

表1

参数表达式"

a11=?f1?pca×RairTVcaa21=RairTVca
b11=?f1?Ncp×1Tcpb12=-?f1?pca×RairTVca
b22=-RairTVca

图2

进气流量拟合评价指标柱状图"

图3

空压机流量Map"

图4

节气门开度拟合评价指标柱状图"

表2

节气门开度拟合多项式系数"

c1=460.2c6=-0.026?12
c2=-9.62c7=-0.000?150?8

c3=3.456

c4=0.066?46

c5=-0.028?26

c8=6.487×10-5

c9=0.000?102?6

c10=8.76×10-5

图5

节气门开度Map"

图6

系统控制框图"

图7

PEMFC阴极进气系统试验平台"

图8

状态反馈增益"

图9

试验1的控制结果"

图10

试验2的控制结果"

图11

试验3的控制结果"

图12

试验4的控制结果"

1 Daud W R W, Rosli R E, Majlan E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620-638.
2 王凡. 燃料电池进气系统控制[D]. 杭州: 浙江大学控制科学与工程学院, 2016.
Wang Fan. Air supply control for fuel cell systems[D]. Hangzhou: College of Control Science and Engineering, Zhejiang University, 2016.
3 王帅. 质子交换膜燃料电池供气系统的建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2019.
Wang Shuai. Research on modeling and control of pem fuel cell air supply system[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2019.
4 周雅夫, 邵芳雪, 黄立建, 等. 燃料电池车用新型低纹波DC/DC变换器设计[J]. 吉林大学学报: 工学版, 2020, 50(4): 1201-1208.
Zhou Ya-fu, Shao Fang-xue, Huang Li-jian, et al. Design of a new low ripple DC/DC converter for fuel cell vehicles [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1201-1208.
5 Wang Guo-liang, Wang Yong, Shi Jun-hai, et al. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC[J]. ISA Transactions, 2010, 49(1): 87-94.
6 Williams J G, Liu G P, Chai S H, et al. Intelligent control for improvements in PEM fuel cell flow performance[J]. International Journal of Automation and Computing, 2008, 5(2): 145-151.
7 Chen H C, Liu Z, Ye X C, et al. Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system[J]. Energy, 2022, 238(C): No. 121949.
8 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: The University of Michigan,2003.
9 Omer Abbaker A M, Wang H P, Tian Y. Adaptive integral type-terminal sliding mode control for PEMFC air supply system using time delay estimation algorithm[J]. Asian Journal of Control, 2022, 24(1): 217-226.
10 Talj R J, Hissel D, Ortega R, et al. Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 1906-1913.
11 Hu Yun-feng, Chen Huan, Gong Xun, et al. Control-oriented modeling and robust nonlinear triple-step controller design for an air-feed system for polymer electrolyte membrane fuel cells[J]. Asian Journal of Control, 2019, 21(4): 1811-1823.
12 Sun L, Shen J, Hua Q S, et al. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied Energy, 2018, 231: 866-875.
13 陈雪兰. 燃料电池系统建模与控制研究[D]. 杭州: 浙江大学控制科学与工程学院, 2013.
Chen Xue-lan. Research on modeling and control of fuel cell system[D]. Hangzhou: College of Control Science and Engineering, Zhejiang University, 2013.
14 Liu Jian-xing, Gao Ya-bin, Su Xiao-jie, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique[J]. IEEE Transactions on Control Systems Technology, 2019, 27 (3): 1129-1138.
15 Zhang Jun-zhi, Liu Gui-dong, Yu Wen-sheng, et al. Adaptive control of the airflow of a PEM fuel cell system[J]. Journal of Power Sources, 2008, 179(2): 649-659.
16 Zhao Dong-dong, Gao Fei, Bouquain David, et al. Sliding-mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1): 51-61.
17 Fonseca R D, Bideaux E, Gerard M, et al. Control of PEMFC system air group using differential flatness approach: validation by a dynamic fuel cell system model[J]. Applied Energy, 2014, 113: 219-229.
18 Li Meng, Yin Hai, Ding Tian-wei, et al. Air flow rate and pressure control approach for the air supply subsystems in PEMFCs[J/OL]. [2022-03-15].
19 Zhao Dong-dong, Benjamin Blunier, Gao Fei, et al. Control of an ultrahigh-speed centrifugal compressor for the air management of fuel cell systems[J]. IEEE Transactions on Industry Applications, 2014, 50(3): 2225-2234.
20 Zhao Dong-dong, Zheng Qing, Gao Fei, et al. Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1788-1798.
[1] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[2] 肖阳,王洁,刘孟军,杨发庆,张天瑶,兰巍. 质子交换膜燃料电池气体扩散层的力学改进模型[J]. 吉林大学学报(工学版), 2022, 52(9): 2147-2155.
[3] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[4] 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995.
[5] 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033.
[6] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[7] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[8] 张恒,詹志刚,陈奔,隋邦杰,潘牧. 气体扩散层各向异性传输特性的孔尺度模拟[J]. 吉林大学学报(工学版), 2022, 52(9): 2055-2062.
[9] 李昂,杨泓渊,雷小萌,宋凯文,千承辉. 基于等效连杆模型的六足机器人行进姿态闭环控制[J]. 吉林大学学报(工学版), 2022, 52(7): 1696-1708.
[10] 韩光信,赵聚乐,胡云峰. 控制输入受限的板球系统滚动线性二次型调节器控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1982-1989.
[11] 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267.
[12] 许芳,张君明,胡云峰,曲婷,曲逸,刘奇芳. 智能车辆路径跟踪横纵向耦合实时预测控制器[J]. 吉林大学学报(工学版), 2021, 51(6): 2287-2294.
[13] 于树友,常欢,孟凌宇,郭洋,曲婷. 基于扰动观测器的轮式移动机器人滚动时域路径跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1097-1105.
[14] 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441.
[15] 陈国迎,姚军,王鹏,夏其坤. 适用于后轮轮毂驱动车辆的稳定性控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 397-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!