›› 2012, Vol. 42 ›› Issue (04): 796-802.

• 论文 • 上一篇    下一篇

线控四轮独立驱动轮毂电机电动车集成控制

李刚1,2, 宗长富1, 陈国迎1, 洪伟1, 何磊1   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022;
    2. 辽宁工业大学 汽车与交通工程学院, 辽宁 锦州 121001
  • 收稿日期:2011-08-11 出版日期:2012-07-01 发布日期:2012-07-01
  • 通讯作者: 宗长富(1962-),男,教授,博士生导师.研究方向:汽车动态仿真及控制.E-mail:cfzhong@yahoo.com.cn E-mail:cfzhong@yahoo.com.cn
  • 基金资助:
    吉林大学仿真与控制国家重点实验室开放基金项目(20111104);"863"国家高技术研究发展计划项目(2012AA110904);国家自然科学基金项目(50775096);辽宁工业大学校内基金项目(201108).

Integrated control for X-by-wire electric vehicle with 4 independently driven in-wheel motors

LI Gang1,2, ZONG Chang-fu1, CHEN Guo-ying1, HONG Wei1, HE Lei1   

  1. 1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2. College of Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001, China
  • Received:2011-08-11 Online:2012-07-01 Published:2012-07-01

摘要: 从提高车辆操纵稳定性的角度,基于模型预测控制理论对线控四轮独立驱动轮毂电机电动车进行主动转向(AFS)、直接横摆力矩(DYC)和主动悬架(AS)的集成控制研究。采用分层集成控制结构,设计了模型预测控制器。研究了驱动力矩控制分配规则和AS控制方法,实现了AFS/DYC的水平集成控制和AFS/DYC/AS的全局集成控制,并通过仿真实验对算法进行了验证。仿真结果表明:集成控制算法能够实现车辆有效跟踪期望值,提高车辆极限工况的稳定性和主动安全性。

关键词: 车辆工程, 轮毂电机, 电动车, 模型预测控制, 集成控制

Abstract: The integrated control for active steering (AFS), direct yaw moment (DYC) and active suspension (AS) of X-by-wire electric vehicle was studied based on the model predictive control theory to enhance the vehicle handling stability. Adopting the hierarchical integrated control structure, a model predictive controller was designed. The driving torque control allocation rules and AS control method were studied and the horizontal integrated control of AFS/DYC and the overall integrated control of AFS/DYC/AS were achieved. A simulation test was carried out to verify the proposed algorithm. The results show that the algorithm can make the vehicle follow the expectation effectively and enhance the vehicle stability in extreme conditions and its active safety.

Key words: vehicle engineering, in-wheel motor, electric vehicle, model predictive control, integrated control

中图分类号: 

  • U461.1
[1] Satoshi Murata. Innovation by in-wheel-motor drive unit//AVEC10, 2010.
[2] Michelins-active-wheel-technology-in-detail. http://www.motorauthority.com/news/1030025_2010.
[3] Geng Cong, Mostefai Lotti, Denai Mouloud, et al. Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5):1411-1419.
[4] 余卓平,姜炜,张立军. 四轮轮毂电机驱动电动汽车扭矩分配控制[J]. 同济大学学报:自然科学版,2008,36(8):1115-1119. Yu Zhuo-ping, Jiang Wei, Zhang Li-jun. Torque distribution control for four wheel in wheel motor electric vehicle[J]. Journal of Tongji University(Natural Science), 2008,36(8):1115-1119.
[5] 邹广才,罗禹贡,李克强. 四轮独立电驱动车辆全轮纵向力优化分配方法[J].清华大学学报:自然科学版,2009,49(5):719-722,727. Zou Guang-cai, Luo Yu-gong, Li Ke-qiang. Tire longitudinal force optimization distribution for independent 4WD EV[J]. Tsinghua University:Sci &Tech, 2009, 49(5):719-722,727.
[6] 郑宏宇. 汽车线控转向路感模拟与主动转向控制策略研究. 长春:吉林大学汽车工程学院,2009. Zheng Hong-yu. Research on road feeling and active steering control strategy for vehicle steer-by-wire system. Changchun:College of Automotive Engineering, Jilin University, 2009.
[7] Masao Nagai. The perspectives of research for enhancing active safety based on advance control technology[J]. Vehicle System Dynamics, 2007, 45(5):413-431.
[8] Yang Xiu-jian, Wang Zeng-cai, Peng Wei-li. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory[J].Vehicle System Dynamics, 2009, 47(1):57-79.
[9] Youn J I M, Tomizuka M. Level and attitude control of the active suspension system with integral and derivative action[J]. Vehicle System Dynamics, 2006, 44 (9):659-674.
[10] Wang Jun, Shen Shui-wen. Integrated vehicle ride and roll control via active suspension[J]. Vehicle System Dynamics, 2008, 46 (1):495-508.
[11] 李道飞.基于轮胎力最优分配的车辆动力学集成控制研究. 上海:上海交通大学机械与动力学院,2008. Li Dao-fei. Study on integrated vehicle dynamics control based on optimal tire force distribution. Shanghai:School of Mechanical Engineering, Shanghai Jiao Tong University,2008.
[12] 宗长富,胡丹,杨肖,等. 基于扩展卡尔曼滤波的汽车行驶状态估计[J]. 吉林大学学报:工学版,2009,39(1):7-11. Zong Chang-fu, Hu Dan, Yang Xiao, et al. Vehicle driving state estimation based on extended kalman filter[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(1):7-11.
[13] 席裕庚. 预测控制[M]. 北京:国防工业出版社,1993.
[14] Rajesh Rajamani.Vehicle Dynamics and Control[M]. New York:Springer, 2006.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!