吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (增刊1): 126-130.

• 论文 • 上一篇    下一篇

仿生挖掘机斗齿减阻试验

张琰1, 黄河2, 任露泉2   

  1. 1. 天津科技大学 机械工程学院,天津 300222;
    2. 吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2012-05-09 出版日期:2012-09-01 发布日期:2012-09-01
  • 作者简介:张琰(1984-),女,讲师,博士.研究方向:工程仿生学.E-mail:y.zhang@tust.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(50635030);吉林大学工程仿生教育部重点实验室开放基金项目(K201201A).

Drag reduction experiment of bionic excvavtor bucket teeth

ZHANG Yan1, HUANG He2, REN Lu-quan2   

  1. 1. College of Mechanical Engineering, Tianjin University Science and Technology, Tianjin 300222, China;
    2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2012-05-09 Online:2012-09-01 Published:2012-09-01

摘要: 为了减小挖掘机斗齿的楔土阻力,提取了蝼蛄前足爪趾的构型,在JL80型斗齿的基础上进行了仿生斗齿设计。采用快速成型加工技术加工了仿生斗齿与JL80型斗齿试样。利用试验机对两种试样进行了楔土试验,测定了楔入阻力与楔入深度的关系。运用有限元分析软件对仿生斗齿和JL80斗齿的楔入过程进行了数值模拟。结果表明,在同样条件下仿生斗齿的楔入阻力较JL80型斗齿低11%。本文设计的仿生斗齿可以为挖掘机斗齿的优化设计提供参考。

关键词: 工程仿生学, 工程机械, 挖掘机斗齿, 蝼蛄, 数值模拟

Abstract: In order to reduce the soil wedging resistance, a bionic excavator bucket teeth was designed based on the JL80 excavator bucket teeth by applying the configuration information of mole cricket foreleg claw. The samples of bionic and JL80 tooth were fabricated by a rapid prototyping machine. The relation between wedging resistance and displacement was measured by wedging experiments using a testing machine. Moreover, the wedging processes of two kinds of excvavtor tooth were numerical simulated by finite element analysis software. The results show that the wedging resistance of bionic bucket teeth is 11% less then that of JL80 bucket teeth under the same experimental condition. The results and conclusions can provide references for optimization design of excvavtor bucket teeth.

Key words: bionic engineering, engineering machinery, excavator bucket teeth, mole cricket, numerical simulation

中图分类号: 

  • TB17
[1] 曹善华. 单斗液压挖掘机[M]. 北京: 机械工业出版社, 1988.

[2] Cao S H. Single Bucket Hydraulic Excavator[M]. Beijing: Mechanical Industry Press, 1988.

[3] Musielski D, Keska W. A new machine for examination of penetration forces acting on the soil penetrating machine parts in the field conditions[J]. Journal of Research and Applications in Agricultural Engineering, 2007, 52(1): 27-29.

[4] Brooker D C. Experimental puncture loads for external interference of pipelines by excavator equipment[J]. International Journal of Pressure Vessels and Piping, 2005, 82(11): 825-832.

[5] 王本生. 挖掘机自刃型斗齿的设计[J]. 矿山机械, 2000(9): 31. Wang Ben-sheng. Design of self-sharpening bucket teeth for 10 m3 digger[J]. Mining & Processing Equipment, 2000(9): 31.

[6] 陈再良, 李亚兰. 矿用挖掘机斗齿的研制[J]. 矿山机械, 1992(9): 9-11. Chen Zai-liang, Li Ya-lan. Development of a mine excavator's bucket teeth[J]. 1992(9): 9-11.

[7] 王文彬. 挖掘机斗齿材料及提高使用寿命的工艺途径[J]. 工程机械, 1989, 5: 48-50. Wang Wen-bin. The material of excavator bucket teeth and the technology for improving service life[J]. Construction Machinery and Equipment, 1989(5): 48-50.

[8] Maciejewski J, Jarzebowski A. Laboratory optimization of the soil digging process[J]. Journal of Terramechanics, 2002, 39(3): 161-179.

[9] Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines[J]. Science in China(Series E: Technological Sciences), 2009, 52(2): 273-284.

[10] JG/T 90-1999.液压挖掘机斗齿分类. 中华人民共和国建筑工业行业标准[S].

[11] 陈东辉. 典型生物摩擦学结构及仿生[D]. 长春: 吉林大学生物与农业工程学院, 2007. Chen Dong-hui. Typical bio-tribological structures and their biomimetic applications[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2007.

[12] Mouazen A M, Nemenyi M. Tillage tool design by the finite element method: part 1, finite element modelling of soil plastic behaviour[J]. Journal of Agriculture Engineering Research, 1999, 72(1): 37-51.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 王继新, 翟新婷, 毕野虹天, 李莺莺. 基于AIC-K-means的载荷分段混合分布估计[J]. 吉林大学学报(工学版), 2018, 48(4): 1092-1098.
[5] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[6] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[7] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[8] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[9] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[10] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[11] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[12] 王倩, 赵丁选, 赵颖, 陈娜. 舰载直升机复杂舰面上的动力学分析[J]. 吉林大学学报(工学版), 2017, 47(4): 1109-1113.
[13] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[14] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[15] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!