吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1698-1703.doi: 10.13229/j.cnki.jdxbgxb201406025

• • 上一篇    下一篇

多孔仿生射流表面减阻特性数值模拟

李芳, 赵刚, 刘维新, 孙壮志   

  1. 哈尔滨工程大学 机电工程学院,哈尔滨 150001
  • 收稿日期:2013-05-27 出版日期:2014-11-01 发布日期:2014-11-01
  • 作者简介:李芳(1985-),女,博士研究生.研究方向:仿生射流减阻技术.E-mail:
  • 基金资助:
    国家自然科学基金项目(51275102)

Numerical simulation of drag reduction characteristics of a bionic jet surface with multiple holes

LI Fang, ZHAO Gang, LIU Wei-xin, SUN Zhuang-zhi   

  1. College of Mechanical and Electrical Engineering,Harbin Engineering University, Harbin 150001, China
  • Received:2013-05-27 Online:2014-11-01 Published:2014-11-01

摘要: 利用RNG k-ε湍流模型对流体在多孔仿生射流表面上的流动特性进行了数值模拟。结果表明:减阻率和流速比呈线性关系,流速比越大减阻效果越好,最大减阻率为59.02%;单孔射流表面中心线上的摩擦阻力系数先减小后增大,局部减阻率最大为111.8%;射流孔越多,减阻效果越好。探讨了仿生射流表面减阻机理:射流通过改变其表面附近的流场结构,使得边界层黏性底层的厚度增加,垂直于壁面的法向速度梯度减小,达到了显著的减阻效果;同时产生稳定的流向涡结构,并在壁面处形成小的二次涡,抑制了流体间的动量交换,减小了摩擦阻力。

关键词: 工程仿生学, 仿生射流表面, 数值模拟, 减阻, 边界层

Abstract: Numerical simulation is carried out to study the drag reduction characteristics of porous bionic jet surface according to RNG k-ε turbulence model. The results show that there exists a linear dependency of the drag reduction on the rate of velocity, that is, the higher the rate of the velocity, the better the effect of drag reduction. The maximal efficiency of drag reduction is 59.02%. Friction coefficient decreases at first, and then increases along with the central line of the bionic jet surface with single hole. The efficiency of drag reduction in local region can be up to 111.8%. Furthermore, the more the number of jet holes, the better the drag reduction effect. The mechanism of the drag reduction of the bionic jet surface is studied. It is found that the jet-flow increases the thickness of the viscous sublayer in the boundary layer by changing the structure of the flow field in the vicinity of the jet surface. As a result, the gradient of normal velocity, perpendicular to the surface, is decreased, which contributes to remarkable drag reduction. Meanwhile, the gradient of normal velocity generates streamwise vortex structure and develops small secondary vortex on the surface, which results in inhibiting momentum exchange between fluids, thus, reducing the friction on the jet surface.

Key words: engineering bionics, bionic jet surface, numerical simulation, drag reduction, boundary layer

中图分类号: 

  • TB17
[1] Bechert D W,Bruse M,Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin[J]. Experiments in Fluids,2000,28(5):403-412.
[2] Lee S J,Lim H C,Han M,et al. Flow control of circular cylinder with a V-grooved micro-riblet film[J]. Fluid Dynamics Research,2005,37(4):246-266.
[3] Lee S J,Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface[J]. Experiments in Fluid,2001,30(2):153-166.
[4] El-Samni O A,Chun H H,Yoon H S. Drag reduction of turbulent flow over thin rectangular riblets[J]. International Journal of Engineering Science,2007,45(2-8):436-454.
[5] 张成春,任露泉,王晶. 旋成体仿生凹环表面减阻试验分析及数值模拟[J].吉林大学学报:工学版,2007,37(1):100-105. Zhang Cheng-chun,Ren Lu-quan,Wang Jing. Experiment and numerical simulation on drag reduction for bodies of revolution using bionic scrobiculate ringed surface[J]. Journal of Jilin University(Engineering and Technology Edition),2007,37(1):100-105.
[6] 谷云庆,赵刚,刘浩,等. 气动灭火炮弹体橡胶圈仿生凹坑表面减阻特性[J].吉林大学学报:工学版,2013,43(4):983-990. Gu Yun-qing,Zhao Gang,Liu Hao,et al. Characteristics of drag reduction of bionic dimpled surface of shell rubber ring of aerodynamic extinguishing cannon[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(4):983-990.
[7] Endwell O D,Victor E P,Wang Ten S,et al. Dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets[J]. AIAA Journal,2009,47(6):1313-1326.
[8] Zhao G,Zhao H L,Shu H S,et al. Simulation study of bionic jetting direction influence on drag reduction effect[J]. Advances in Nature Science,2010,3(2):17-26.
[9] 曾玉红,槐文信. 横流中三维圆形垂直浮力射流特性数值分析[J].应用基础与工程科学学报,2005,13(2):120-128. Zeng Yu-hong,Huai Wen-xin. Numerical analysis for a round turbulent buoyant jet in a cross flow[J]. Journal of Basic Science and Engineering,2005,13(2):120-128.
[10] 谷云庆,赵刚,郑金兴,等. 射流表面的主流场速度与射流速度耦合减阻特性[J].中南大学学报:自然科学版,2012,43(12):4713-4721. Gu Yun-qing,Zhao Gang,Zheng Jin-xing,et al. Characteristics of drag reduction on coupling of jet surface main flow field velocity and jet velocity[J]. Journal of Central South University (Science and Technology),2012,43(12):4713-4721.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[5] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[7] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[8] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[9] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[10] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[11] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[12] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[13] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[14] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[15] 谷诤巍, 吕萌萌, 张文学, 雷娇娇, 徐虹. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!