吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1723-1728.doi: 10.13229/j.cnki.jdxbgxb201406029

• • 上一篇    下一篇

三维拉弯柔性成形装备中单元体快速调形技术

高嵩1, 2, 梁继才1, 2, 陈广义1, 2, 魏志勇1, 2, 滕菲1, 2   

  1. 1.大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024;
    2.大连理工大学 汽车工程学院,辽宁 大连 116024
  • 收稿日期:2013-07-17 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 梁继才(1960-),男,教授.研究方向:车用结构现代成形技术.E-mail:liang_jicai@yahoo.com.cn
  • 作者简介:高嵩(1987-),男,博士研究生.研究方向:铝型材三维拉弯成形工艺与控制.E-mail:
  • 基金资助:
    国家工信部技改专项项目(吉工信投资[2011]350)

Rapid adjusting of fundamental units in process of flexible 3D stretch-bending

GAO Song1, 2, LIANG Ji-cai1, 2, CHEN Guang-yi1, 2, WEI Zhi-yong1, 2, TENG Fei1, 2   

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2.School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2013-07-17 Online:2014-11-01 Published:2014-11-01

摘要: 将多点成形技术思想引入到型材拉弯工艺中,形成三维拉弯柔性成形技术。为了精确地实现型材三维成形,对型材三维拉弯过程中多点模具的自由度进行了分析,设计了可实现4自由度的单元体结构。给出了单元体调形参数的具体计算方法,并提出一种串并结合的单元体调形控制方法。建立了单元体水平和垂直两个方向调形的数学模型。以高铁动车头骨架结构件为例,进行了三维拉弯试验。结果表明:三维拉弯柔性成形装备达到了实际应用的要求。自动化调形技术较人工调形技术生产效率提高60%以上,并降低了劳动强度。

关键词: 金属材料, 金属塑性成形, 三维拉弯, 单元体, 调形, 柔性成形

Abstract: A flexible 3D stretch-bending process was developed based on the idea of multi-point forming technique. To realize precise 3D shape of the profile, the freedom of single multi-point die in the process of 3D stretch-bending was analyzed first, and the structure of fundamental unit with 4-DOF was designed. Then, the calculation method of unit adjusting parameters was presented, and a combination of serial and parallel adjustment control method was proposed. In addition, the mathematical model of the unit was set up. With the structural component of high-speed trains as an example, 3D stretch-bending test was carried out. The experimental results show that the flexible 3D stretch-bending equipment meets the practical requirements. Compared with manual adjustment, automatic unit adjustment can improve the production efficiency by 60%, as well as reduce labor intensity.

Key words: metallic materials, metal forming, 3D stretch-bending, fundamental units, shape adjustment, flexible forming

中图分类号: 

  • TG335.9
[1] Yu Cheng-long, Li Xiao-qiang. Theoretical analysis on springback of L-section extrusion in rotary stretch bending process[J]. Transactions of Nonferrous Metals Society of China(English Edition), 2011, 21(12):2705-2710.
[2] Miller J E, Kyriakides S, Bastard A H. On bend-stretch forming of aluminum extruded tubes-I: experiments[J]. International Journal of Mechanical Sciences, 2001, 43(5):1283-1317.
[3] Li Xiao-qiang, Li Hui,Li Dong-sheng. Springback simulation in stretch bending of aluminum extrusions using static implicit and dynamic explicit FE codes[J]. Advanced Materials Research, 2011, 295-297:1606-1612.
[4] 李小强, 周贤宾, 金朝海,等. 基于有限元模拟的三维型材拉弯轨迹设计[J]. 航空学报, 2009,30(3):544-550. Li Xiao-qiang, Zhou Xian-bin, Jin Chao-hai,et al. Design of stretch bending trajectory based on finite element simulation for three-dimensional profile parts[J]. ACTA Aeronautica ET Astronautica Sinica, 2009, 30(3):544-550.
[5] Vollertsen F, Sprenger A, Kraus J, et al. Extrusion, channel, and profile bending: a review[J]. Journal of Materials Processing Technology, 1999, 87(1-3):1-27.
[6] Chatti S, Hermes M, Tekkaya A E,et al. The new TSS bending process: 3D bending of profiles with arbitrary cross-sections[J]. CIRP Annals-Manufacturing Technology,2010, 59(1):315-318.
[7] Gong Xue-peng, Li Ming-zhe,Hu Zhi-qing, et al. Research on continuous multi-point forming technology for three-dimensional sheet metal[J]. International Journal of Materials and Product Technology, 2010, 38(2-3):210-222.
[8] 于沛洲,宋相军. 多点控制三维拉弯扭转成形模具[P]. 中国, CN202192139U, 2012-04-18.
[9] Li M Z, Cai Z Y, Sui Z, et al. Multi-point forming technology for sheet metal[J]. Journal of Materials Processing Technology, 2002, 129(1-3):333-338.
[1] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[2] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[3] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[4] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[5] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[6] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[7] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[8] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[9] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[10] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[11] 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[12] 张志强, 贾晓飞, 袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
[13] 滕菲, 刘博, 张万喜, 高嵩. 柔性三维拉弯成形工艺稳健设计[J]. 吉林大学学报(工学版), 2015, 45(5): 1481-1487.
[14] 张志强, 贾晓飞, 赵勇, 李湘吉. 高强度硼钢淬火界面热交换系数的实验与模拟[J]. 吉林大学学报(工学版), 2015, 45(4): 1195-1199.
[15] 关庆丰, 李艳, 侯秀丽, 杨盛志, 王晓彤. 固溶态Mg-Gd-Y-Nd合金强流脉冲电子束表面改性[J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!