吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 756-763.doi: 10.13229/j.cnki.jdxbgxb201603012

• 论文 • 上一篇    下一篇

基于单个地磁传感器的交叉口排队长度估计

贾利民1, 陈娜1, 李海舰1, 2, 董宏辉1, 3   

  1. 1.北京交通大学 轨道交通控制与安全国家重点实验室, 北京 100044;
    2.北京工业大学 北京市交通工程重点实验室, 北京 100124;
    3.北京交通大学 北京市城市交通信息智能感知与服务工程技术研究中心, 北京 100044
  • 收稿日期:2014-08-26 出版日期:2016-06-20 发布日期:2016-06-20
  • 作者简介:贾利民(1963),男,教授,博士生导师.研究方向:智能交通,交通安全.E-mail:jialm@vip.sina.com
  • 基金资助:
    国家科技支撑计划项目(2014BAG01B02).

Intersection queue length estimation with single magnetic sensor

JIA Li-min1, CHEN Na1, LI Hai-jian1, 2, DONG Hong-hui1, 3   

  1. 1.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China;
    2.Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China;
    3.Beijing Engineering Research Center of Urban Traffic Information Intelligent Sensing and Service Technologies, Beijing Jiaotong University, Beijing 100044, China
  • Received:2014-08-26 Online:2016-06-20 Published:2016-06-20

摘要: 通过对车辆排队机理进行建模,利用车辆通过传感器时间及车尾时距描述车辆排队演化过程,从而估计邻近信号灯周期内的车辆排队长度。分析了车辆通过传感器时间及车辆车尾时距的动态变化规律,并提出车尾时距模型、通过时间模型和综合模型等对排队长度进行估计。最后,利用现场试验对本方法进行验证,试验结果表明本文提出的模型和方法能够准确估计交叉口车辆排队长度,且系统成本低廉、部署方便,便于大规模推广应用,能够为信号灯周期优化、交通服务水平评价等应用提供基础数据。

关键词: 交通运输系统工程, 地磁传感器, 信号交叉口, 排队长度估计, 排队车辆数

Abstract: To estimate the intersection queue length, a magnetic sensor is deployed near the stop line at the intersection. Through the vehicle queue mechanism modeling, the evolution of vehicle occupancy sensor time and the departure interval can be obtained. Eventually, the queue length of the last signal cycle can be estimated. This paper analyzes the variance of vehicle occupancy sensor time and the departure interval with the increase in queued vehicle number, thereby proposes departure interval model, vehicle occupancy sensor time model and comprehensive model to estimate the queue length. The accuracies of the proposed models are compared using field experiments. Results show that the proposed queue length estimation method can accurately get the queue length of the last signal cycle. The method costs low and can be deployed easily, and thus, it can facilitate large-scale popularization and application. It can provide intersection queue length information for signal cycle optimization and traffic service level evaluation in road signal intersections.

Key words: engineering of transportation and communication system, magnetic sensor, signal intersection, queue length estimation, queued vehicle numbers

中图分类号: 

  • U491
[1] 庄立坚,何兆成,叶伟佳,等. 基于浮动车数据的排队长度检测方法研究[J]. 交通运输系统工程与信息,2013,13(3):78-84.
Zhuang Li-jian,He Zhao-cheng,Ye Wei-jia,et al. Queue length estimation based on floating car data[J]. Journal of Transportation System Engineering and Information Technology,2013,13(3):78-84.
[2] 时彦洞. 基于视频的车辆排队长度检测技术研究[D]. 江门:五邑大学信息工程学院,2009.
Shi Yan-dong. Queue detection based on video technology[D]. Jiangmen: School of Information Engineering, Wuyi University,2009.
[3] 刘喆. 基于计算机视觉的运动车辆检测与跟踪算法研究[D]. 北京:北京工业大学电子信息与控制工程学院,2009.
Liu Zhe. Moving vehicle detection based on computer vision[D]. Beijing: College of Electronic Information and Control Engineering, Beijing University of Technology,2009.
[4] 史元超. 基于新型传感器的交通状态获取技术的研究[D]. 北京:北京交通大学交通运输学院, 2009.
Shi Yuan-chao. Traffic condition acquirement technology based on New-type sensor[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University,2009.
[5] Zheng J, Ma X, Wu Y J, et al. Measuring signalized intersection performance in real-time with traffic sensors[J]. Journal of Intelligent Transportation Systems,2013,17(4):304-316.
[6] Negri P. Estimating the queue length at street intersections by using a movement feature space approach[J].IET Image Processing, 2014,8(7):406-416.
[7] Vigos G, Papageorgiou M, Wang Y. Real-time estimation of vehicle-count within signalized links[J]. Transportation Research Part C: Emerging Technologies,2008,16(1):18-35.
[8] 买艳辉. 基于出租车GPS数据的速度分布和排队长度估计研究[D]. 长沙:长沙理工大学交通运输工程学院,2013.
Mai Yan-hui. The study on an estimation of speed distribution and queue length traffic state based on taxi GPS data[D]. Changsha:School of Traffic and Transportation Engineering, Changsha University of Science & Technology, 2013.
[9] Comert G, Cetin M. Queue length estimation from probe vehicle location and the impacts of sample size[J]. European Journal of Operational Research,2009,197(1): 196-202.
[10] Cai Q, Wang Z, Guo X, et al. New calculating method for HCM 2000 queue length estimation procedures with the application of floating car data[J]. Procedia-Social and Behavioral Sciences,2013,96:2201-2210.
[11] Comert G. Simple analytical models for estimating the queue lengths from probe vehicles at traffic signals[J]. Transportation Research Part B: Methodological,2013,55:59-74.
[12] Badillo B E, Rakha H, Rioux T W, et al. Queue length estimation using conventional vehicle detector and probe vehicle data[C]∥15th International IEEE Conference on Intelligent Transportation Systems (ITSC2012). United States: Institute of Electrical and Electronics Engineers Inc,2012:1674-1681.
[13] Comert G. Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data[J]. European Journal of Operational Research,2013,226(1):67-76.
[14] 夏发钦. 利用地感应线圈检测机动车辆的原理与实现[D]. 武汉:武汉科技大学信息科学与工程学院,2011.
Xia Fa-qin. Vehicle detection using induction coil detector[D]. Wuhan: School of Information Science and Engineering, Wuhan University of Science and Technology,2011.
[15] Li H, Dong H, Jia L, et al. Some practical vehicle speed estimation methods by a single traffic magnetic sensor[C]∥14th International IEEE Conference on Intelligent Transportation Systems. United States:Institute of Electrical and Electronics Engineers Inc,2011:1566-1573.
[16] Li Hai-jian,Dong Hong-hui,Jia Li-min, et al. Vehicle classification with single multi-functional magnetic sensor and optimal MNS-based CART[J]. Measurement,2014,55: 142-152.
[17] 李海舰. 道路交通信息获取多参量感知与传感器网络优化[D]. 北京: 北京交通大学交通运输学院, 2014.
Li Hai-jian. Multi-parameter sensing and sensor network optimization for road traffic information acquisition[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University,2014.
[18] Sanchez R O, Horowitz R, Varaiya P. Analysis of queue estimation methods using wireless magnetic sensors[J]. Transportation Research Record: Journal of the Transportation Research Board,2011,2229(1):34-45.
[19] 代磊磊,姜桂艳,裴玉龙,等. 饱和信号交叉口排队长度预测[J].吉林大学学报:工学版,2008,38(6):1287-1290.
Dai Lei-lei,Jiang Gui-yan,Pei Yu-long,et al. Prediction of queue length at saturate signalized intersection[J]. Journal of Jilin University (Engineering and Technology Edition),2008,38(6):1287-1290.
[20] 施晓芬. 城市信号交叉口驾驶员速度控制和视觉搜索行为研究[D]. 西安:长安大学公路学院,2011.
Shi Xiao-fen. Speed control and visual search of driving behavior at the intersection[D]. Xi'an: School of Highway, Chang'an University,2011.
[21] 王晶. 基于驾驶员性别的城市快速路跟驰模型研究[D].北京:北京工业大学城市交通学院,2008.
Wang Jing. A car following model in urban expressway based on driver's gender[D]. Beijing: College of Metropolitan Transportation, Beijing University of Technology,2008.
[22] 刘影. 基于机器视觉的交叉路口车速和车辆排队长度检测[D]. 天津:天津工业大学电子信息与工程学院,2012.
Liu Ying. Vehicle speed and vehicle queue length detection based on video at plane intersection[D]. Tianjin: School of Electronic and Information Engineering, Tianjin Polytechnic University,2012.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!