吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 71-75.doi: 10.13229/j.cnki.jdxbgxb201701011

• 论文 • 上一篇    下一篇

双挂汽车列车高速阶跃横向失稳能量分析

张义花, 许洪国, 刘宏飞, 王发继   

  1. 吉林大学 交通学院,长春130022
  • 收稿日期:2015-12-03 出版日期:2017-01-20 发布日期:2017-01-20
  • 通讯作者: 刘宏飞(1971-)男,副教授,博士.研究方向:半挂汽车列车操纵稳定性.E-mail:hongfeiliu@jlu.edu.cn
  • 作者简介:张义花(1987-),女,博士研究生.研究方向:多挂汽车列车横向稳定性.E-mail:zhangyihua1989@126.com
  • 基金资助:
    国家自然科学基金项目(51078167).

Energy analysis of lateral instability in vehicle combinations at high-speed step response

ZHANG Yi-hua, XU Hong-guo, LIU Hong-fei, WANG Fa-ji   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2015-12-03 Online:2017-01-20 Published:2017-01-20

摘要: 采用图论方法,并结合各个车辆单元的链接关系,得到了双挂汽车列车各个车辆单元3种可能的失稳顺序。基于TruckSim建立包括非线性轮胎模型的多体动力学双挂汽车列车模型,通过仿真高速阶跃响应下各个车辆单元状态变量的变化趋势,可知侧倾角速度是影响车辆失稳的首要因素。结合能量方程求解不同车速下各个车辆单元在阶跃响应中的最大能量,得到了各个车辆单元的失稳顺序,同时对图论法中提出的失稳顺序进行了验证和能量分析。

关键词: 车辆工程, 车辆动力学, 双挂汽车列车, 图论, 横向失稳, 能量分析

Abstract: Three possible instability sequences in vehicle combinations were obtained by using graph theory and the link relationship of each unit of the vehicle. A multi-body dynamic model, including nonlinear tire model of the vehicle combination was established by TruckSim. By simulation of the change of the state variables of each vehicle unit under high-speed step response, it was obtained that the main factor to influence the instability of the vehicle is the roll rate. Combining with the energy equation, the maximum energy of each vehicle unit under different vehicle speed was calculated, and the instability sequence of the vehicle units was obtained. Meanwhile, verification and energy analysis were carried out for the sequence of possible instability obtained by graph theory.

Key words: vehicle engineering, vehicle dynamics, vehicle combinations, graph theory, lateral instability, energy analysis

中图分类号: 

  • U469.5
[1] Aurell J, Wadman T, Trucks V. Vehicle combinations based on the modular concept[R]. Sweden:Volvo Trucks,2007.
[2] Kharrazi S,Lidberg M,Fredriksson J.A generic controller for improving lateral performance of heavy vehicle combinations[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 227(5):619-642.
[3] Woodrooffe J. Long combination vehicle (LCV) safety performance in Alberta 1995 to 1998[R]. Woodrooffe & Associates, 2001.
[4] Vlk F. Lateral dynamics of commercial vehicle combinations a literature survey[J]. Vehicle System Dynamics, 1982, 11(5/6): 305-324.
[5] Fancher P S, Mathew A. Safety implications of various truck configurations:Volume III-summary report[J]. Laws, 1990, 122(11/12):897-906.
[6] Fancher P S. Directional dynamics considerations for multi-articulated, multi-axled heavy vehicles[C]∥SAE Paper, 892449.
[7] Fancher P, Winkler C. Directional performance issues in evaluation and design of articulated heavy vehicles[J]. Vehicle System Dynamics, 2007, 45(7):607-647.
[8] van de Molengraft-Luijten M F J, Besselink I J M, Verchuren R,et al. Analysis of the lateral dynamic behaviour of articulated commercial vehicles[J]. Vehicle System Dynamics, 2011, 50(2):169-189.
[9] Aoki A, Marumo Y, Kageyama I. Effects of multiple axles on the lateral dynamics of multi-articulated vehicles[J]. Vehicle System Dynamics, 2013, 51(3):338-359.
[10] de Almeida L V, Garbin L, dos Santos N C R. Lateral dynamics simulation of a truck with modified rear suspension[C]∥SAE Paper, 2012-36-0020.
[11] Barbieri F A A, de Almeida L V, Garbin L, et al. Rollover study of a heavy truck combination with two different semi-trailer suspension configurations[C]∥SAE Paper, 2014-36-0025.
[12] Tabatabaei S H, Zahedi A, Khodayari A. The effects of the cornering stiffness variation on articulated heavy vehicle stability[C]∥IEEE International Conference on Vehicular Electronics and Safety(ICVES),Istanbul, Turkey,2012:78-83.
[13] Roebuck R, Odhams A, Tagesson K, et al. Implementation of trailer steering control on a multi-unit vehicle at high speeds[J]. Journal of Dynamic Systems Measurement & Control, 2013, 136(2):167-175.
[14] Jujnovich B A, Cebon D. Path-following steering control for articulated vehicles[J]. Journal of Dynamic Systems Measurement & Control, 2013, 135(3):990-996.
[15] Sun T, He Y, Ren J. Dynamics analysis of car-trailer systems with active trailer differential braking strategies[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(1):73-85.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!