吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 353-364.doi: 10.13229/j.cnki.jdxbgxb201702003

• • 上一篇    下一篇

车-液耦合动力学建模及液体响应成分对操纵性的影响

万滢, 赵伟强, 封冉, 凌锦鹏, 宗长富, 郑宏宇   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2016-10-24 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 赵伟强(1977-),男,副教授,博士.研究方向:汽车仿真与控制.E-mail:zwqjlu@163.com
  • 作者简介:万滢(1991-),女,博士研究生.研究方向:重型商用车及液罐车辆的动力学与稳定性控制.E-mail:yingwan12345@163.com
  • 基金资助:
    国家自然科学基金项目(51575224,51575223),吉林省科技发展计划项目(20150204066GX).

Dynamic modeling and vehicle-liquid coupling characteristic analysis for tank trucks

WAN Ying, ZHAO Wei-qiang, FENG Ran, LING Jin-peng, ZONG Chang-fu, ZHENG Hong-yu   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2016-10-24 Online:2017-03-20 Published:2017-03-20

摘要: 针对液罐车辆不同工况下车-液耦合动态响应特性及对整车影响的研究少、液体晃动简化建模理论不足的问题,根据描述液体模型的差异,本文结合液体模型和车辆操纵模型建立了4种液罐车辆动力学模型:①等质量刚体模型;②准静态液体模型;③横向等效单摆模型;④数值液体模型。通过对比不同工况类型和不同工况激烈程度下4种模型的响应差异,分析了不同情况下液体晃动各种响应成分被激发的程度及其对车辆操纵响应的影响,从而确定了不同工况时车-液耦合程度,并给出了建立合理简化模型的建议,为建立液体简化模型和进行液罐车稳定性主动控制奠定基础。

关键词: 车辆工程, 车-液耦合, 数值模型, 操纵响应, 晃动特性

Abstract: In order to determine the degree of vehicle-liquid coupling in different conditions, four dynamic models are developed, all of which consist of vehicle handling dynamics model and liquid model. The difference of the four models is in the liquid model: 1, rigid cargo model, 2, quasi-static liquid model, 3, lateral equivalent pendulum model, 4, complicated CFD liquid slosh model. The Under different handling conditions and different intensity, the responses calculated by the four models are compared. The excited degree of various response components of liquid sloshing and its influence on vehicle handling dynamics are analyzed. The results may provide guidance for the development of more suitable simplified model and active stability control of tank vehicles.

Key words: vehicle engineering, vehicle-liquid coupling dynamics, liquid slosh CFD model, vehicle handling response, liquid slosh characteristics

中图分类号: 

  • U461.6
[1] 李显生,郑雪莲,刘宏飞. 非满载罐式半挂汽车列车侧倾稳定性评价改进算法[J]. 吉林大学学报:工学版, 2012, 42(5):1089-1094.
Li Xian-sheng, Zheng Xue-lian, Liu Hong-fei. Improved algorithm on roll stability evaluation of partially filled tractor-tank semitrailer[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(5):1089-1094.
[2] 郑雪莲,李显生,任园园,等. 非满载汽车罐车液体冲击等效机械模型[J]. 吉林大学学报:工学版,2013,43(6):1488-1493.
Zheng Xue-lian, Li Xian-sheng, Ren Yuan-yuan, et al. Equivalent mechanical model for liquid sloshing in partially-filled tank vehicle[J]. Journal of Jilin University(Engineering and Technology Edition) , 2013,43(6):1488-1493.
[3] 岳宝增,祝乐梅,于丹. 储液罐动力学与控制研究进展[J]. 力学进展, 2011,41(1):79-92.
Yue Bao-zeng, Zhu Le-mei, Yu Dan. Recent advances in liquid-filled tank dynamics and control[J]. Advances in Mechanics, 2011, 41(1): 79-92.
[4] Kolaei A, Rakheja S, Richard M J. Effects of tank cross-section on dynamic fluid slosh loads and roll stability of a partly-filled tank truck[J]. European Journal of Mechanics B-Fluids, 2014, 46: 46-58.
[5] Bottiglione F, Mantriotta G. Field tests and validation of dynamical models of tank vehicles Part II: experimental tests and results[J]. International Journal of Heavy Vehicle Systems, 2012,19(1):23-39.
[6] 陈铭年. 油罐车转弯横向稳定性的计算分析[J]. 汽车工程,2001,23(5):359-360.
Chen Ming-nian. Calculate analysis of transversal stabilization for turning of oil tank truck[J]. Automotive Engineering, 2001, 23(5): 359-360.
[7] 胡晓明, 李万莉, 赵志国, 等.液罐车罐体内液体横向晃动研究[J]. 应用力学学报, 2013, 30(5): 641-646.
Hu Xiao-ming, Li Wan-li, Zhao Zhi-guo, et al. Horizontal fluid sloshing analysis in the body of tank truck[J]. Chinese Journal of Applied Mechanics, 2013, 30(5): 641-646.
[8] Mantriota G. Directional stability of articulated tank vehicles: A simplified model[J]. International Journal of Heavy Vehicle Systems, 2003, 10(1):144-165.
[9] Acarman T, Ozguner U. Rollover prevention for heavy trucks using frequency shaped sliding mode control[J]. Vehicle System Dynamics, 2006,44(10):737-62.
[10] 郑雪莲,李显生,任园园,等. 瞬时液体冲击对汽车罐车侧倾稳定性的影响[J]. 吉林大学学报:工学版,2014,44(3):625-630.
Zheng Xue-lian, Li Xian-sheng, Ren Yuan-yuan, et al. Rollover stability analysis of tank vehicle impacted by transient liquid sloshing[J]. Journal of Jilin University(Engineering and Technology Edition) , 2014,44(3):625-630.
[11] Modaressi-Tehrani K, Rakheja S, Stiharu I. Three-dimensional analysis of transient slosh within a partly-filled tank equipped with baffles[J]. Vehicle System Dynamics, 2007,45(6): 525-548.
[12] Hakan A. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound and Vibration, 2012,331:41-52.
[13] Wasfy T M, O'Kins J, Smith S. Expermental validation of a coupled fluid-multibody dynamics model for tanker trucks[C]∥SAE Paper 2008-01-0777.
[14] Cheli F, D'Alessandro V, Premoli A, et al. Simulation of sloshing in tank trucks[J]. International Journal of Heavy Vehicle Systems, 2013, 1744232X.
[15] Azadi S, Jafari A, Samadian M. Effect of parameters on roll dynamic response of an articulated vehicle carrying liquids[J]. Journal of Mechanical Science and Technology, 2014, 28(3): 837-848.
[16] Fleissner F, Lehnart A, Eberhard P. Dynamic simulation of sloshing fluid and granular cargo in transport vehicles[J].Vehicle System Dynamics, 2010, 48(1):3-15.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!