吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 731-736.doi: 10.13229/j.cnki.jdxbgxb201703006

• • 上一篇    下一篇

复杂底部结构下的重型载货汽车气动阻力

李明达1, 2, 隗海林1, 门玉琢2, 包翠竹1   

  1. 1.吉林大学 交通学院,长春 130022;
    2.长春工程学院 机电工程学院,长春 130012
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 隗海林(1969-),男,教授,博士生导师.研究方向:车路协同节能技术.E-mail:khl69@163.com
  • 作者简介:李明达(1982-),男,讲师,博士研究生.研究方向:车路协同节能技术.E-mail:limingda_123@qq.com
  • 基金资助:
    国家自然科学基金项目(51378075)

Aerodynamic drag of heavy duty vehicle with complex underbody structure

LI Ming-da1, 2, KUI Hai-lin1, MEN Yu-zhuo2, BAO Cui-zhu1   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.School of Mechatronics Engineering, Changchun Institute of Technology, Changchun 130012, China
  • Online:2017-05-20 Published:2017-05-20

摘要: 针对具有复杂底部结构的五轴重型载货汽车气动阻力进行研究,建立了与实车外形结构一致的车辆模型,利用基于格子玻尔兹曼方法的计算流体动力学软件XFlow,模拟了模型外流场流体的宏观行为。进行了模型的格子尺度优化试验,得到整车模型的空气阻力系数以及底部结构对整车气动阻力的影响。对模型底部压力分布、旋转车轮的表面速度分布、模型底部外流场速度分布、湍流强度分布以及车辆模型底部粒子轨迹线进行了分析,根据分析结果对车辆模型底部进行结构优化。仿真结果表明:车辆模型的空气阻力系数误差在6%以内,对模型底部结构进行优化可以降低整车空气阻力系数23%。

关键词: 交通运输系统工程, 重型载货汽车, 格子玻尔兹曼方法, XFlow, 空气阻力系数

Abstract: The aerodynamic drag of five axes heavy duty vehicle with complex underbody structure was studied. The model with the real vehicle structure shape was established. Then, the macroscopic behavior of fluids in external flow field was simulated using the computational fluid dynamics software XFlow, which is based on Lattice Boltzmann Method. The air resistance coefficient of the whole vehicle model was obtained by lattice scale optimization test, and the influence of the underbody structure on the aerodynamic drag was investigated. The vehicle surface pressure distribution, the surface velocity field of the rotating wheels, the velocity distribution in the external flow field of the model, the turbulence intensity distribution, and the particle trajectories under the vehicle were analyzed. Results show that the drag coefficient error of the truck model is within 6%. Through the underbody structure optimization, the aerodynamic drag coefficient of the whole vehicle model can be reduced by 23%.

Key words: engineering of communications and transportation system, heavy duty vehicle, lattice Boltzmann method, XFlow, air resistance coefficient

中图分类号: 

  • U461.8
[1] 谷正气,林肖辉,李伟平,等. 车轮辐板形状对汽车气动阻力影响分析[J]. 科技导报,2011,29(6):57-61.
Gu Zheng-qi, Lin Xiao-hui, Li Wei-ping, et al. Effect of the shape of wheel spokes on vehicle aerodynamic performance[J]. Science & Technology Review,2011,29(6):57-61.
[2] 王靖宇,赖晨光,胡兴军. 汽车底部外形对气动特性的影响[J]. 中国公路学报,2008,21(2):111-115.
Wang Jing-yu,Lai Chen-guang,Hu Xing-jun. Influence of automotive underbody shape on aerodynamic performance[J]. China Journal of Highway and Transport,2008,21(2):111-115.
[3] 杨志刚,沙潇,贾青. 车轮宽度对轿车风阻的影响[J]. 同济大学学报:自然科学版,2014,42(11):1682-1686.
Yang Zhi-gang,Sha Xiao,Jia Qing. Influence of wheel width on vehicle aerodynamic drag[J]. Journal of Tongji University(Natural Science),2014,42(11):1682-1686.
[4] Mcmanus J, Zhang X. A computational study of the flow around an isolated wheel in contact with the ground[J]. Journal of Fluids Engineering,2006,128(3):520-530.
[5] 傅立敏,胡兴军,张世村. 车轮辐板开孔对汽车外流场影响的数值模拟[J]. 农业机械学报,2006,37(1):8-11.
Fu Li-min,Hu Xing-jun,Zhang Shi-cun. Numerical simulation of influence of holes in wheel spokes on automotive external flow-field[J]. Transactions of Chinese Society for Agricultural Machinery,2006,37(1):8-11.
[6] 傅立敏,胡兴军,张世村. 不同几何参数车轮的汽车流场数值模拟研究[J]. 汽车工程,2006,28(5):451-454.
Fu Li-min, Hu Xing-jun,Zhang Shi-cun. A research on numerical simulation for the flow field around automotive wheels with different geometric parameters[J]. Automotive Engineering,2006,28(5):451-454.
[7] 胡兴军,傅立敏,张世村,等. 具有不同辐板车轮的空气动力学特性研究[J]. 同济大学学报:自然科学版,2006,34(12):1684-1688.
Hu Xing-jun, Fu Li-min, Zhang Shi-cun, et al. Research on aerodynamic characteristics of automotive wheels with different wheel spokes[J]. Journal of Tongji University(Natural Science),2006,34(12):1684-1688.
[8] Angelo E, Angelo G, Santos P H D G, et al. Numerical study of the influence of elements inside the wheelhouse on the passenger vehicle aerodynamic[J]. Open Journal of Fluid Dynamics,2015,5(2):199-207.
[9] Regert T, Lajos T. Description of flow field in the wheelhouses of cars[J]. International Journal of Heat & Fluid Flow,2007,28(4):616-629.
[10] Nakashima T,Tsubokura M,Vázquez M, et al. Coupled analysis of unsteady aerodynamics and vehicle motion of a road vehicle in windy conditions[J]. Computers& Fluids,2013,80:1-9.
[11] EI-Alti M, Chernoray V, Jahanmiri M, et al. Experimental and computational studies of active flow control on a model truck-trailer[C]∥The European Physical Journal Conferences,2012:1-16.
[12] Mattana A,Salvadori S, Morbiato T,et al. On the ground-vehicle induced flows and obstacle interaction for energy harvesting purposes[J]. Journal of Wind Engineering&Industrial Aerodynamics,2014,124(7):121-131.
[13] Salari K. DOE'effort to reduce truck aerodynamic dray through joint experiments and computations[DB/OL].[2016-03-28]. https:∥www.energy.gov/sites/prod/files/2014/03/f10/vss006_salari_2012_o_0.pdf.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[2] 刘汉光, 王国强, 孟东阁, 赵寰宇. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报(工学版), 2018, 48(2): 486 -491 .
[3] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804 -810 .
[4] 董超, 成凯, 胡康乐, 胡文强. 全地形铰接式履带车辆俯仰运动性能[J]. 吉林大学学报(工学版), 2017, 47(3): 827 -836 .